FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis.

J Clin Invest

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine.

Published: June 2018

While the transcription factor forkhead box M1 (FOXM1) is well known as a proto-oncogene, its potential role in lung fibroblast activation has never been explored. Here, we show that FOXM1 is more highly expressed in fibrotic than in normal lung fibroblasts in humans and mice. FOXM1 was required not only for cell proliferation in response to mitogens, but also for myofibroblast differentiation and apoptosis resistance elicited by TGF-β. The lipid mediator PGE2, acting via cAMP signaling, was identified as an endogenous negative regulator of FOXM1. Finally, genetic deletion of FOXM1 in fibroblasts or administration of the FOXM1 inhibitor Siomycin A in a therapeutic protocol attenuated bleomycin-induced pulmonary fibrosis. Our results identify FOXM1 as a driver of lung fibroblast activation and underscore the therapeutic potential of targeting FOXM1 for pulmonary fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983327PMC
http://dx.doi.org/10.1172/JCI87631DOI Listing

Publication Analysis

Top Keywords

lung fibroblast
12
fibroblast activation
12
foxm1
9
driver lung
8
pulmonary fibrosis
8
foxm1 critical
4
critical driver
4
lung
4
activation fibrogenesis
4
fibrogenesis transcription
4

Similar Publications

In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.

View Article and Find Full Text PDF

Background: Autophagy and immunity play important regulatory roles in lung developmental disorders. However, there is currently a lack of bioinformatics analysis on autophagy-related genes (ARGs) and immune infiltration in bronchopulmonary dysplasia (BPD). We aim to screen and validate the signature genes of BPD by bioinformatics and in vivo experiment.

View Article and Find Full Text PDF

Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease.

Mol Ther

January 2025

Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia. Electronic address:

Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in COPD is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1, uPAR) that induced collagen and airway remodeling.

View Article and Find Full Text PDF

Heterogeneity and therapeutic implications of cancer-associated fibroblasts in lung cancer: Recent advances and future perspectives.

Chin Med J Pulm Crit Care Med

December 2024

Translational Research Center for Lung Cancer, The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China.

Lung cancer is a leading cause of cancer-related mortality. The tumor microenvironment is a complex and heterogeneous cellular environment surrounding tumor cells, including cancer-associated fibroblasts (CAFs), blood vessels, immune cells, the extracellular matrix, and various cytokines secreted by cells. CAFs are highly heterogeneous and play crucial roles in lung cancer.

View Article and Find Full Text PDF

Invasive lung myofibroblasts are the main cause of tissue remodeling in idiopathic pulmonary fibrosis (IPF). A key mechanism contributing to this important feature is aberrant crosstalk between the abnormal/injured lung epithelium and pulmonary fibroblasts. Here, we demonstrate that lungs from patients with IPF and from mice with bleomycin (BLM)-induced pulmonary fibrosis (PF) are characterized by the induction of human epididymis protein 4 (HE4) overexpression in epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!