Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: 1.2-2.0 million cases of leishmaniasis occur annually throughout the world. The available drugs like Amphotericin B, antimonials and miltefosine are unable to fulfill the need due to less effectiveness, high toxicity, resistance, high cost and complex route of administration. Leishmania survives inside the macrophages through different evasion mechanisms; one of that is activation of its trypanothione reductase enzyme which neutralizes the reactive oxygen species generated inside the macrophages to kill the parasites. This enzyme is unique and absent in human, therefore in this study I targeted it for screening of new inhibitors to fight against leishmaniasis.
Methods: Homology modeling of Leishmania major trypanothione reductase was performed using Phyre2 server. The homology based modelled protein was validated with PROCHECK analysis. Ligplot analysis was performed to predict the active residues inside the binding pocket. Further, virtual screening of ligand library containing 113 ligands from PubChem Bioassay was performed against the target using AutoDock Vina Tool.
Results: Top five ligands showed best binding affinity. The molecule having PubChem CID: 10553746 showed highest binding affinity of -11.3 kcal/mol. Over all this molecule showed highest binding affinity and moderate number of hydrogen bonds. Hopefully, this molecule will be able to block the activity of target enzyme, trypanothione reductase of Leishmania major effectively and may work as new molecules to fight against cutaneous leishmanaisis.
Conclusion: This study will help the researchers to identify the new molecules which can block the activity of leishmanial-trypanothione reductase, a novel enzyme of trypanosomatids. These screened inhibitors may also be effective not only in leishmaniasis but also other trypanosomatid-mediated infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871526518666180502141849 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!