Unreasonable application of nitrogen fertilizer to cropland decreases nitrogen use efficiency of crop. A large amount of nitrogen loss to environment through runoff, leaching, ammonia volati-lization, nitrification-denitrification, etc., causes water and atmospheric pollution, poses serious environmental problems and threatens human health. The type of nitrogen fertilizer and its application rate, time, and method have significant effects on nitrogen loss. The primary reason for nitrogen loss is attributed to the supersaturated soil nitrogen concentration. Making full use of environmental nitrogen sources, reducing the application rate of chemical nitrogen fertilizers, applying deep placement fertilizing method, and applying organic fertilizers with chemical nitrogen fertilizers, are effective practices for reducing nitrogen loss and improving nitrogen use efficiency. It is suggested that deve-loping new high efficiency nitrogen fertilizers, enhancing nitrogen management, and strengthening the monitoring and use of environmental nitrogen sources are the powerful tools to decrease nitrogen application rate and increase efficiency of cropland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201609.022 | DOI Listing |
Birth Defects Res
January 2025
Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA.
Background: Epidemiological studies report associations of drinking water disinfection byproducts (DBPs) with adverse health outcomes, including birth defects. Here, we used a rat model susceptible to pregnancy loss (full-litter resorption; FLR) and eye malformations (anophthalmia, microphthalmia) to test 11 DBPs, including trihalomethanes, haloacetic acids (HAAs), and nitrogen-containing DBPs (N-DBPs).
Methods: Timed-pregnant F344 rats received gavage doses of chloroform, chlorodibromomethane, iodoform, chloroacetic acid, bromoacetic acid, dibromoacetic acid (DBA), diiodoacetic acid (DIA), trichloroacetic acid (TCA), dibromonitromethane, and iodoacetonitrile on gestation days (GD) 6-10.
FEMS Microbiol Ecol
January 2025
Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.
View Article and Find Full Text PDFAndes Pediatr
August 2024
Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
Unlabelled: Among the restrictive eating and eating disorders, anorexia nervosa (AN) and atypical anorexia nervosa (AAN) are the ones that present the greatest medical complications.
Objective: Describe the characteristics of patients with AN and AAN and their differences in demographic and clinical parameters.
Patients And Method: The records of patients <19 years of age with AN admitted to Clinica Santa María between 2013 and 2019 were reviewed.
Plant Biotechnol J
January 2025
College of Agronomy and Biotechnology, China Agricultural University, China.
The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Forest fertilization is a forest management practice that is often claimed to increase productivity in boreal forests. Although regarded as an efficient way to increase profitability, it is also costly, and associated with risks such as biodiversity loss and nitrogen leaching from the soil. To be both cost-efficient and sustainable, potential enhanced productivity due to fertilization should be balanced against the adverse environmental impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!