A greenhouse pot experiment was conducted to study the effects of nitrogen application on the yield and nitrogen use efficiency of rapeseed under post anthesis waterlogging condition. Two high nitrogen use efficiency rapeseed genotypes 'Monty' and 'Xiangyou 15' and two low nitrogen use efficiency rapeseed genotypes 'R210' and 'Bin270' were treated with 3 nitrogen levels (0.05, 0.2, 0.3 g N·kgsoil) under waterlogging or normal water condition. The results showed that compared with the normal water condition, rapeseed pods per plant, 1000-seed mass, seed number per pod and seed yield decreased significantly under post anthesis waterlogging condition. Under the normal water condition, yield increased significantly along with the increment of nitrogen fertilizer, while under waterlogging condition the contribution of increment of nitrogen fertilizer was not significant. Compared with the low nitrogen use efficiency rapeseed genotypes, the high nitrogen use efficiency rapeseed genotypes stimulated seed filling under post anthesis waterlogging condition. Under the same water treatment, nitrogen use efficiency, nitrogen partial factor productivity, agronomic nitrogen use efficiency, nitrogen uptake efficiency and N harvest index of nitrogen fertilizer decreased significantly as the results of post anthesis waterlogging, nitrogen uptake and utilization capability of different rapeseed genotypes were affected significantly by waterlogging. Compared with the low nitrogen use efficiency rapeseed genotypes, the high nitrogen use efficiency rapeseed genotypes were more conducive to nitrogen translocation and redistribution of nitrogen to the pods under waterlogging condition, thus improving the seed production efficiency. Significant water and nitrogen interaction effects existed in rapeseed yield performance parameters, and the effects of water, nitrogen fertilizer and their interaction on rapeseed yield and yield performance parameters varied among diffe-rent genotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201604.021 | DOI Listing |
Chem Sci
January 2025
Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst.
View Article and Find Full Text PDFCurrently in wheat breeding, genome wide association studies (GWAS) have successfully revealed the genetic basis of complex traits such as nitrogen use efficiency (NUE) and its biological processes. In the GWAS model, thresholding is common strategy to indicate deviation of expected range of -(s), and it can be used to find the distribution of true positive associations under or over of test statistics. Therefore, the threshold plays a critical role to identify reliable and significant associations in wide genome, while the proportion of false positive results is relatively low.
View Article and Find Full Text PDFUsing the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
Electrosurgery (ES) offers a promising alternative to conventional steel scalpel surgery (SSS), providing superior hemorrhage control and efficient tissue dissection with minimal invasiveness. Given the limited literature, this study aims to compare the clinical efficacy of ES with that of SSS in bovine umbilical herniorrhaphy. Fourteen crossbred male calves with reducible umbilical hernias, aged less than one month and weighing 25-47 kg, were randomly assigned to two experimental groups: group A (ES) and group B (SSS), each containing seven calves.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!