A rapid decline in egg production of laying hens begins after 480 d of age. Such a rapid decrease results predominantly from the ovarian aging, accompanied by endocrine changes, decreased yolk synthesis and accumulation, and the reduction in follicles selected into the preovulatory hierarchy. In this study, hens at 90, 150, 280, and 580 d old (D90, D150, D280, and D580, respectively) were compared for yolk precursor formation in the liver to elucidate effects of aging on laying performance. The results showed that liver lipid synthesis increased remarkably in hens from D90 to D150, but decreased sharply at D580 as indicated by the changes in triglyceride (TG) levels. This result was consistent with the age-related changes of the laying performance. The levels of liver antioxidants and total antioxidant capacity decreased significantly in D580 hens and the methane dicarboxylic aldehyde in D580 hens was much higher than that at other stages. The serum 17β-estradiol level increased from D90 to D280, but decreased at D580 (P<0.05). The expression of estrogen receptor α and β mRNAs in the liver displayed similar changes to the serum 17β-estradiol in D580 hens. Expressions of the genes related to yolk precursor formation and enzymes responsible for fat acid synthesis were all decreased in D580 hens. These results indicated that decreased yolk precursor formation in the liver of the aged hens resulted from concomitant decreases of serum 17β-estradiol level, transcription levels of estrogen receptors and critical genes involved in yolk precursor synthesis, and liver antioxidant status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962516 | PMC |
http://dx.doi.org/10.1631/jzus.B1700054 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Child Health, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China.
Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan.
During vegetative growth, plants undergo various morphological and physiological changes in the transition from the juvenile phase to the adult phase. In terms of stress resistance, it has been suggested that plants gain or reinforce disease resistance during the process of maturation, which is recognized as adult plant resistance or age-related resistance. While much knowledge has been obtained about changes in disease resistance as growth stages progress, knowledge about changes in plant responses to pathogens with progressing age in plants is limited.
View Article and Find Full Text PDFNutrients
January 2025
College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!