Original reaction pathways can be explored in the on-surface synthesis approach where small aromatic precursors are confined to the surface of single crystal metals. The bis-indanedione molecule reacted with itself on silver surfaces in different ways, through a Knoevenagel reaction or an oxidative coupling, leading to the formation of a variety of new molecular compounds and covalently-linked 1D or 2D networks. Noteworthy, original reaction products were obtained that cannot be synthesized in traditional solvent-based chemistry. The lowest activation temperature for the homo-coupling reactions was found on the Ag(111) surface. The Ag(110) was highly selective in terms of coupling reaction type, while on Ag(100) the temperature could finely control the selectivity. The on-surface synthesis approach is shown here to be particularly efficient to produce original compounds in mild conditions, using activation temperatures as low as 200 °C. The different structures were characterized by scanning tunnelling microscopy (STM) together with X-ray photoelectron emission spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201800406 | DOI Listing |
RSC Adv
January 2025
Département de Chimie, Faculté des Sciences et de Génie, Université Laval Québec QC G1V 0A6 Canada.
Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80918 United States.
The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Vascular Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China.
The gut bacteria not only play a crucial role in maintaining human health but also exhibit close associations with the occurrence of numerous diseases. Understanding the physiological and pathological functions of gut bacteria and enabling early diagnosis of gut diseases heavily relies on accurate knowledge about their in vivo distribution. Consequently, there is a significant demand for noninvasive imaging techniques capable of providing real-time localization information regarding gut bacteria.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, 76100, Malaysia.
This paper explores the electrical conductivity interphase of Ag/Epoxy composite using modified McLachlan theory and 3D finite element composite model through experimental verification. The model characteristic presents conductivity as a dynamic function influenced by particle content, particle electrical properties, electrical properties transition, and an exponent. This model was meticulously crafted, considering the intricate interplay between the polymer matrix and silver particles, the tunnelling distance between adjacent silver particles, and the interphase regions around particles.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia.
Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!