Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Premise Of The Study: DNA may be preserved for thousands of years in very cold or dry environments, and plant tissue fragments and pollen trapped in soils and shallow aquatic sediments are well suited for the molecular characterization of past floras. However, one obstacle in this area of study is the limiting bias in the bioinformatic classification of short fragments of degraded DNA from the large, complex genomes of plants.
Methods: To establish one possible baseline protocol for the rapid classification of short-read shotgun metagenomic data for reconstructing plant communities, the read classification programs Kraken, Centrifuge, and MegaBLAST were tested on simulated and ancient data with classification against a reference database targeting plants.
Results: Performance tests on simulated data suggest that Kraken and Centrifuge outperform MegaBLAST. Kraken tends to be the most conservative approach with high precision, whereas Centrifuge has higher sensitivity. Reanalysis of 13,000 years of ancient sedimentary DNA from North America characterizes potential post-glacial vegetation succession.
Discussion: Classification method choice has an impact on performance and any downstream interpretation of results. The reanalysis of ancient DNA from glacial lake sediments yielded vegetation histories that varied depending on method, potentially changing paleoecological conclusions drawn from molecular evidence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895191 | PMC |
http://dx.doi.org/10.1002/aps3.1034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!