Molecular materials possessing phototunable fluorescence properties have attracted great interest owing to their potential applications in optical switches and storage. However, most fluorescence modulation is realized through light-responsive structural isomerization in solution. It is a formidable challenge to achieve phototunable fluorescence emission with high fatigue resistance and a fast response rate in the solid state for the development of devices. Here, a mononuclear compound was constructed the coordination of fluorophores with Fe ions, whose electronic configuration changed from low spin to high spin upon light irradiation. The photoinduced spin crossover of Fe ions was accompanied by a 20% increase in the fluorescence emission intensity. A temperature-dependent spectroscopic study together with time-dependent density functional theory calculations revealed that the effective spectral overlap between the emission of the fluorophores and the absorption band of the Fe ions differed between the low spin and high spin states. The photoinduced spin crossover switched the energy transfer from the fluorophore to the Fe ion, resulting in fluorescence modulation. The presented results provide a novel approach for developing optical memory and sensors electron rearrangement of photoinduced spin crossover.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914289PMC
http://dx.doi.org/10.1039/c7sc05221aDOI Listing

Publication Analysis

Top Keywords

photoinduced spin
16
spin crossover
16
fluorescence modulation
12
spin
8
crossover switched
8
switched energy
8
energy transfer
8
fluorophores ions
8
phototunable fluorescence
8
fluorescence emission
8

Similar Publications

Significant photoinduced voltages observed in permalloy structures consist of two contributions with different origins, which depend on illumination conditions, structure geometry and magnetic field in distinct ways. The first component is the plasmon drag effect voltage closely associated with plasmon propagation. The second contribution is magnetically dependent and can be related to photoinduced gradients in the sample temperature and spin polarization.

View Article and Find Full Text PDF

Ultrafast Laser-Induced Spin Dynamics in All-Semiconductor Ferromagnetic CrSBr-Phosphorene Heterostructures.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure.

View Article and Find Full Text PDF

We developed a technique allowing the direct observation of photoinduced charge-transfer states (CTSs)-the weakly coupled electron-hole pairs preceding the completely separated charges in organic photovoltaic (OPV) blends. Quadrature detection of the electron spin echo (ESE) signal enables the observation of an out-of-phase ESE signal of CTS. The out-of-phase Electron-Electron Double Resonance (ELDOR) allows measuring electron-hole distance distributions within CTS and its temporal evolution in the microsecond range.

View Article and Find Full Text PDF

Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized, and their optoelectronic properties were investigated. Carbonyl groups were found to increase the reduction potential of the BODIPY core by 0.15-0.

View Article and Find Full Text PDF

Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)] (1) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!