Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928475PMC
http://dx.doi.org/10.15171/joddd.2018.009DOI Listing

Publication Analysis

Top Keywords

base designs
12
enamel crack
12
length enamel
12
enamel cracks
12
debonding
9
enamel damage
8
debonding bracket
8
bracket base
8
base design
8
shear bond
8

Similar Publications

Objective: To assess variability among data elements collected among existing neonatal hypoxic-ischemic encephalopathy (HIE) data registries worldwide and to determine the need for future harmonization of standard common data elements.

Study Design: This was a cross-sectional study of data elements collected from current or recently employed HIE registry data forms. Registries were identified by literature search and email inquiries to investigators worldwide.

View Article and Find Full Text PDF

Topologically constrained DNA-mediated one-pot CRISPR assay for rapid detection of viral RNA with single nucleotide resolution.

EBioMedicine

January 2025

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:

Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.

Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.

View Article and Find Full Text PDF

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

What Is the Optimal Geometry of Dissolving Microneedle Arrays? A Literature Review.

Pharmaceutics

January 2025

Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.

The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!