Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we investigated whether over-activation of AKT pathway is important in the resistance to 5-fluorouracil (5-FU) in SNU-C5/5-FU cells, 5-FU-resistant human colon cancer cells. When compared to wild type SNU-C5 cells (WT), SNU-C5/5-FU cells showed over-activation of PI3K/AKT pathway, like increased phosphorylation of AKT, mTOR, and GSK-3β, nuclear localization of β-catenin, and decreased E-cadherin. Moreover, E-cadherin level was down-regulated in recurrent colon cancer tissues compared to primary colon cancer tissues. Gene silencing of AKT1 or treatment of LY294002 (PI3 kinase inhibitor) increased E-cadherin, whereas decreased phospho-GSK-3β. LY294002 also reduced protein level of β-catenin with no influence on mRNA level. PTEN level was higher in SNU-C5/WT than SNU-C5/5-FU cells, whereas the loss of PETN in SNU-C5/WT cells induced characteristics of SNU-C5/5-FU cells. In SNU-C5/5-FU cells, NF-κB signaling was activated, along with the overexpression of COX-2 and stabilization of survivin. However, increased COX-2 contributed to the stabilization of survivin, which directly interacts with cytoplasmic procaspase-3, while the inhibition of AKT reduced this cascade. We finally confirmed that combination treatment with 5-FU and LY294002 or Vioxx could induce apoptosis in SNU-C5/5-FU cells. These data suggest that inhibition of AKT activation may overcome 5-FU-resistance in SNU-C5/5-FU cells. These findings provide evidence that over-activation of AKT is crucial for the acquisition of resistance to anticancer drugs and AKT pathway could be a therapeutic target for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929436 | PMC |
http://dx.doi.org/10.18632/oncotarget.24952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!