Suppressive effects of lycopene and β-carotene on the viability of the human esophageal squamous carcinoma cell line EC109.

Oncol Lett

School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Published: May 2018

The molecular mechanisms underlying the chemopreventive effects of carotenoids in different types of cancer are receiving increasing attention. In the present study, the role of peroxisome proliferator-activated receptor γ (PPARγ) in the effect of lycopene and β-carotene on the viability of EC109 human esophageal squamous carcinoma cells was investigated. The viability of EC109 cells was evaluated using MTT assays. The effects of lycopene and β-carotene on the expression of PPARγ, p21, cyclin D1 and cyclooxygenase-2 (COX-2) were analyzed by western blotting. Lycopene and β-carotene (5-40 µM) dose- and time-dependently reduced the viability of the EC109 cells. GW9662, an irreversible PPARγ antagonist, partly attenuated the decrease in EC109 cell viability induced by these carotenoids. Lycopene and β-carotene treatments upregulated the expression of PPARγ and p21, and downregulated the expression of cyclin D1 and COX-2. These modulatory effects of the carotenoid treatments were suppressed by GW9662, suggesting that the inhibition of EC109 cell viability by lycopene and β-carotene involves PPARγ signaling pathways and the modulation of p21, cyclin D1 and COX-2 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920922PMC
http://dx.doi.org/10.3892/ol.2018.8175DOI Listing

Publication Analysis

Top Keywords

lycopene β-carotene
24
viability ec109
12
effects lycopene
8
β-carotene viability
8
human esophageal
8
esophageal squamous
8
squamous carcinoma
8
ec109 cells
8
expression pparγ
8
pparγ p21
8

Similar Publications

Singlet fission in carotenoid dimers - the role of the exchange and dipolar interactions.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.

A theory of singlet fission in carotenoid dimers is presented which aims to explain the mechanism behind the creation of two uncorrelated triplets. Following the excitation of a carotenoid chain "bright" B+u state, there is ultrafast internal conversion to the intrachain "dark" 1B-u triplet-pair state. This strongly exchange-coupled state evolves into a pair of triplets on separate chains and spin-decoheres to form a pair of single, unentangled triplets, corresponding to complete singlet fission.

View Article and Find Full Text PDF

Recently, the use of plant-derived biostimulants has been suggested as a sustainable way to improve the nutritional quality of tomato and mitigate the effects of environmental stresses In this regard, a two-year experiment was conducted in open field on four cultivars of tomato (two commercial tomatoes and two local landraces of long shelf-life tomato), to assess the crop response, in terms of fruit yield and quality traits, to the foliar application of two plant-derived biostimulants based on protein hydrolysates (PH), under opposite water regimes (no irrigation and full irrigation), in a semi-arid environment of South Italy. Tomato plants in field were sprayed with a solution containing one of the two biostimulants approximately every 15 days. Full irrigation significantly promoted plant productivity, leading to yields the 22 % and 57 % higher than those produced under no irrigation.

View Article and Find Full Text PDF

Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material.

View Article and Find Full Text PDF

The solid waste generated from processing rosehip fruits into jam is valuable due to its rich content in fibres, polyphenols, and carotenoids; it could be valorised as a functional ingredient in a powder form to enrich food products. This study aimed to test its potential as a value-added ingredient, especially to enrich waffle cones with fibres, polyphenols, and carotenoids. In this regard, four formulations of waffle cones were prepared by partially substituting wheat flour with rosehip waste powder at 0%, 10%, 15%, and 20%, reaching concentrations of 0%, 3.

View Article and Find Full Text PDF

DNA Methylation Is Crucial for 1-Methylcyclopropene Delaying Postharvest Ripening and Senescence of Tomato Fruit.

Int J Mol Sci

December 2024

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.

DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!