Phosphorodiamidate morpholino oligomers (PMO) are short single-stranded DNA analogs that are built upon a backbone of morpholine rings connected by phosphorodiamidate linkages. As uncharged nucleic acid analogs, PMO bind to complementary sequences of target mRNA by Watson-Crick base pairing to block protein translation through steric blockade. PMO interference of viral protein translation operates independently of RNase H. Meanwhile, PMO are resistant to a variety of enzymes present in biologic fluids, a characteristic that makes them highly suitable for applications. Notably, PMO-based therapy for Duchenne muscular dystrophy (DMD) has been approved by the United States Food and Drug Administration which is now a hallmark for PMO-based antisense therapy. In this review, the development history of PMO, delivery methods for improving cellular uptake of neutrally charged PMO molecules, past studies of PMO antagonism against RNA and DNA viruses, PMO target selection, and remaining questions of PMO antiviral strategies are discussed in detail and new insights are provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920040 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.00750 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
The advent of autonomous nanomotors presents exciting opportunities for nanodrug delivery. However, significant potential remains for enhancing the asymmetry of nanomotors and advancing the development of second near-infrared (NIR-II) light-propelled nanomotors capable of operating within deep tissues. Herein, we developed a dual-ligand assisted anisotropic assembly strategy that enables precise regulation of the interfacial energy between selenium (Se) nanoparticle and periodic mesoporous organosilica (PMO).
View Article and Find Full Text PDFTrop Med Infect Dis
January 2025
Department of Research, PMO, Ministry Branch in Makkah Region, Ministry of Health (MOH), Makkah 21955, Saudi Arabia.
Dengue fever is caused by four common serotypes of the dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4). Patients infected with one serotype may develop lifelong serotype-specific protective immunity. However, they remain susceptible to reinfection with the other serotypes, often increasing the risk of severe forms of dengue.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, China.
In this work, we successfully prepared four POM-based organic-inorganic hybrids, namely, [(CHN)(CHN)][PMoO] (1), [(CHN)(CHN)][PMoO] (2), [(CHN)][PMoO]·4HO (3), and [(CHN)][PMoO] (4) (where CHN = pyridine, CHN = pyrazine, CHN = 2,7-diamino-1,3,4,6,8,9-hexaazaspiro[4.4] nonane, and CHN = 3-amino-1,2,4-triazole), using a hydrothermal method. Compounds 1 and 2 exhibited a lamellar three-dimensional structure.
View Article and Find Full Text PDFJ Gene Med
January 2025
Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen City, Guangdong, China.
Purpose: Postmenopausal osteoporosis (PMO) is mainly concerned with the imbalance of bone resorption and bone formation. Icariin (ICA) plays a vital role in bone protection. This study investigated the mechanism of ICA in PMO rats.
View Article and Find Full Text PDFFront Genet
January 2025
First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
Introduction: The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!