Five calves that had shown neurological symptoms within 9 days after birth were histopathologically diagnosed as encephalomalacia. Two calves showed bilateral laminar cerebrocortical necrosis and neuronal necrosis in the corpus striatum and hippocampus. Since the distributional pattern of the lesions was consistent with that of global ischemia in other species, the lesions were probably hypoxic/ischemic encephalopathy consistent with the history of dystocia and perinatal asphyxia. One calf also showed bilateral laminar cerebrocortical necrosis. However, the lesions were chronic ones, because the calf had survived for long time and necropsied at postnatal day 118. Additionally, the lesions did not involve the corpus striatum and hippocampus. The other two calves showed multifocal necrosis with vascular lesions characterized by fibrin thrombi, perivascular edema and perivascular hyaline droplets in the cerebral cortex, corpus striatum, thalamus, brain stem and cerebellum. Considering the age of onsets and histopathological appearance, it was possible that latter three calves were also hypoxic/ischemic encephalopathy, however, exact cause of them was not revealed. In all calves, degenerated/necrotic neurons showed positive reactions for Fluoro-Jade C and degenerated axons showed immunoreactivity for Alzheimer precursor protein A4. Therefore, these markers were applicable to examination of brain injury in neonatal calves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068296PMC
http://dx.doi.org/10.1292/jvms.18-0143DOI Listing

Publication Analysis

Top Keywords

corpus striatum
12
neonatal calves
8
bilateral laminar
8
laminar cerebrocortical
8
cerebrocortical necrosis
8
striatum hippocampus
8
hypoxic/ischemic encephalopathy
8
calves
7
lesions
5
histopathological study
4

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Deep brain stimulation of the anterior cingulate cortex reduces opioid addiction in preclinical studies.

Sci Rep

January 2025

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran.

Substance Use Disorder (SUD) is a medical condition where an individual compulsively misuses drugs or alcohol despite knowing the negative consequences. The anterior cingulate cortex (ACC) has been implicated in various types of SUDs, including nicotine, heroin, and alcohol use disorders. Our research aimed to investigate the effects of deep brain stimulation (DBS) in the ACC as a potential therapeutic approach for morphine use disorder.

View Article and Find Full Text PDF

We developed a reversed-phased high-performance liquid chromatographic method combining ultraviolet detection and integrated pulsed amperometric detection for the simultaneous quantification of dopamine, 5-hydroxyindolacetic acid, homovanillic acid, serotonin, 3,4-dihydroxyphenylacetic acid, norepinephrine and epinephrine. All target components were completely separated in a C18 column with isocratic elution of 5% acetonitrile solution containing 8 mM HClO4 and 0.20 mM 1-octanesulfonic acid as an ion pairing reagent.

View Article and Find Full Text PDF

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!