Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Although atopic dermatitis (AD) often starts in early childhood, detailed tissue profiling of early-onset AD in children is lacking, hindering therapeutic development for this patient population with a particularly high unmet need for better treatments.
Objective: We sought to globally profile the skin of infants with AD compared with that of adults with AD and healthy control subjects.
Methods: We performed microarray, RT-PCR, and fluorescence microscopy studies in infants and young children (<5 years old) with early-onset AD (<6 months disease duration) compared with age-matched control subjects and adults with longstanding AD.
Results: Transcriptomic analyses revealed profound differences between pediatric patients with early-onset versus adult patients with longstanding AD in not only lesional but also nonlesional tissues. Although both patient populations harbored T2-centered inflammation, pediatric AD also showed significant T17/T22 skewing but lacked the T1 upregulation that characterizes adult AD. Pediatric AD exhibited relatively normal expression of epidermal differentiation and cornification products, which is downregulated in adults with AD. Defects in the lipid barrier (eg, ELOVL fatty acid elongase 3 [ELOVL3] and diacylglycerol o-acyltransferase 2 [DGAT2]) and tight junction regulation (eg, claudins 8 and 23) were evident in both groups. However, some lipid-associated mediators (eg, fatty acyl-CoA reductase 2 and fatty acid 2-hydroxylase) showed preferential downregulation in pediatric AD, and lipid barrier genes (FA2H and DGAT2) showed inverse correlations with transepidermal water loss, a functional measure of the epidermal barrier.
Conclusions: Skin samples from children and adult patients with AD share lipid metabolism and tight junction alterations, but epidermal differentiation complex defects are only present in adult AD, potentially resulting from chronic immune aberration that is not yet present in early-onset disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2018.02.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!