Ferumoxytol is a promising non-gadolinium-based contrast agent with numerous varied magnetic resonance imaging applications. Previous reviews of vascular applications have focused primarily on cardiac and aortic applications. After considering safety concerns and technical issues, the objective of this paper is to explore peripheral applications for ferumoxytol-enhanced magnetic resonance angiography (MRA) and venography (MRV) in the upper and lower extremities. Separate searches for each of the following keywords were performed in pubmed: "ferumoxytol," "ultrasmall superparamagnetic iron oxide," and "USPIO." All studies pertaining to MRA or MRV in humans are included in this review. Case-based examples of various peripheral applications are used to supplement a relatively scant literature in this space. Ferumoxytol's unique properties including high T1 relaxivity and prolonged intravascular half-life make it the optimal vascular imaging contrast agent on the market and one whose vast potential has only begun to be tapped.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437525 | PMC |
http://dx.doi.org/10.1016/j.crad.2018.02.021 | DOI Listing |
J Formos Med Assoc
January 2025
Department of Radiology, National Taiwan University Hospital, Taipei, Taiwan.
Contrast media are essential agents that enhance the diagnostic capabilities of imaging studies, such as computed tomography and magnetic resonance imaging. However, concerns regarding the risk of adverse events have led to cautious use in patients with chronic kidney disease. A multidisciplinary review by nephrologists, cardiologists, and radiologists at National Taiwan University Hospital examined evidence linking iodinated contrast media and gadolinium-based contrast agents with acute kidney injury and nephrogenic systemic fibrosis.
View Article and Find Full Text PDFActa Biomater
January 2025
College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
The use of conventional contrast agents in computed tomography (CT) and magnetic resonance (MR) imaging is often limited in patients with chronic kidney disease (CKD) due to potential nephrotoxicity. Ferumoxytol, originally developed for iron supplementation, has emerged as a promising alternative MR contrast agent that is safer for patients with CKD. This study aims to present our center's experience with ferumoxytol as a contrast agent in CKD patients.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.
Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.
Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.
ACS Appl Mater Interfaces
January 2025
Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!