Ferumoxytol-enhanced MRI in the peripheral vasculature.

Clin Radiol

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Department of Radiology, Veterans Affairs Medical Center, University of California, San Francisco, CA, USA.

Published: January 2019

Ferumoxytol is a promising non-gadolinium-based contrast agent with numerous varied magnetic resonance imaging applications. Previous reviews of vascular applications have focused primarily on cardiac and aortic applications. After considering safety concerns and technical issues, the objective of this paper is to explore peripheral applications for ferumoxytol-enhanced magnetic resonance angiography (MRA) and venography (MRV) in the upper and lower extremities. Separate searches for each of the following keywords were performed in pubmed: "ferumoxytol," "ultrasmall superparamagnetic iron oxide," and "USPIO." All studies pertaining to MRA or MRV in humans are included in this review. Case-based examples of various peripheral applications are used to supplement a relatively scant literature in this space. Ferumoxytol's unique properties including high T1 relaxivity and prolonged intravascular half-life make it the optimal vascular imaging contrast agent on the market and one whose vast potential has only begun to be tapped.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437525PMC
http://dx.doi.org/10.1016/j.crad.2018.02.021DOI Listing

Publication Analysis

Top Keywords

contrast agent
8
magnetic resonance
8
peripheral applications
8
applications
5
ferumoxytol-enhanced mri
4
mri peripheral
4
peripheral vasculature
4
vasculature ferumoxytol
4
ferumoxytol promising
4
promising non-gadolinium-based
4

Similar Publications

Contrast media are essential agents that enhance the diagnostic capabilities of imaging studies, such as computed tomography and magnetic resonance imaging. However, concerns regarding the risk of adverse events have led to cautious use in patients with chronic kidney disease. A multidisciplinary review by nephrologists, cardiologists, and radiologists at National Taiwan University Hospital examined evidence linking iodinated contrast media and gadolinium-based contrast agents with acute kidney injury and nephrogenic systemic fibrosis.

View Article and Find Full Text PDF

Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.

View Article and Find Full Text PDF

The use of conventional contrast agents in computed tomography (CT) and magnetic resonance (MR) imaging is often limited in patients with chronic kidney disease (CKD) due to potential nephrotoxicity. Ferumoxytol, originally developed for iron supplementation, has emerged as a promising alternative MR contrast agent that is safer for patients with CKD. This study aims to present our center's experience with ferumoxytol as a contrast agent in CKD patients.

View Article and Find Full Text PDF

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!