A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an Integrated Syringe-Pump-Based Environmental-Water Analyzer ( iSEA) and Application of It for Fully Automated Real-Time Determination of Ammonium in Fresh Water. | LitMetric

Development of an Integrated Syringe-Pump-Based Environmental-Water Analyzer ( iSEA) and Application of It for Fully Automated Real-Time Determination of Ammonium in Fresh Water.

Anal Chem

State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology , Xiamen University, Xiamen 361102 , People's Republic of China.

Published: June 2018

The development of a multipurpose integrated syringe-pump-based environmental-water analyzer ( iSEA) and its application for spectrophotometric determination of ammonium is presented. The iSEA consists of a mini-syringe pump equipped with a selection valve and laboratory-programmed software written by LabVIEW. The chemistry is based on a modified indophenol method using o-phenylphenol. The effect of reagent concentrations and sample temperatures was evaluated. This fully automated analyzer had a detection limit of 0.12 μM with sample throughput of 12 h. Relative standard deviations at different concentrations (0-20 μM) were 0.23-3.36% ( n = 3-11) and 1.0% ( n = 144, in 24 h of continuous measurement, ∼5 μM). Calibration curves were linear ( R = 0.9998) over the range of 0-20 and 0-70 μM for the detection at 700 and 600 nm, respectively. The iSEA was applied in continuous real-time monitoring of ammonium variations in a river for 24 h and 14 days. A total of 1802 samples were measured, and only 0.4% was outlier data (≥3 sigma residuals). Measurements of reference materials and different aqueous samples ( n = 26) showed no significant difference between results obtained by reference and present methods. The system is compact (18 cm × 22 cm × 24 cm), portable (4.8 kg), and robust (high-resolution real-time monitoring in harsh environments) and consumes a small amount of chemicals (20-30 μL/run) and sample/standards (2.9 mL/run).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b01490DOI Listing

Publication Analysis

Top Keywords

integrated syringe-pump-based
8
syringe-pump-based environmental-water
8
environmental-water analyzer
8
analyzer isea
8
isea application
8
fully automated
8
determination ammonium
8
real-time monitoring
8
development integrated
4
isea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!