Foxtail millet is the second-most widely planted species of millet and the most important cereal food in China. Our previous study showed that bound polyphenol of inner shell (BPIS) from foxtail millet bran displayed effective antitumor activities in vitro and in vivo. The present research further implied that BPIS has the ability to reverse the multidrug resistance of colorectal cancer in human HCT-8/Fu cells, the IC values of 5-fluorouracil (5-Fu), oxaliplatin (L-OHP), and vincristine (VCR) were decreased form 6593 ± 53.8, 799 ± 48.9, and 247 ± 10.3 μM to 5350 ± 22.3 (3261 ± 56.9), 416 ± 16.6 (252 ± 15.6), and 144 ± 8.30 (83.8 ± 5.60) μM when HCT-8/Fu cells were pretreated with 0.5 (1.0) mg/mL BPIS for 12 h. The 12 phenolic acid compounds of BPIS were identified by ultraperformance liquid chromatography-triple-time of flight/mass spectrometry (UPLC-Triple-TOF/MS) method. Especially, the fraction of molecular weight (MW) < 200 of BPIS reversed the multidrug resistance in HCT-8/Fu cells, and ferulic acid and p-coumaric acid were the main active components, the IC values were 1.23 ± 0.195 and 2.68 ± 0.163 mg/mL, respectively. The present data implied that BPIS significantly enhanced the sensitivity of chemotherapeutic drugs through inhibiting cell proliferation, promoting cell apoptosis, and increasing the accumulation of rhodamine-123 (Rh-123) in HCT-8/Fu cells. Real-time polymerase chain reaction (RT-PCR) and Western blot data indicated that BPIS also decreased the expression levels of multidrug resistance protein 1 (MRP1), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). Collectively, these results show that BPIS has potential ability to be used as a new drug-resistance reversal agent in colorectal cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b01659DOI Listing

Publication Analysis

Top Keywords

multidrug resistance
16
hct-8/fu cells
16
foxtail millet
12
colorectal cancer
12
bound polyphenol
8
millet bran
8
human hct-8/fu
8
bpis
8
implied bpis
8
resistance protein
8

Similar Publications

Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant methicillin-resistant (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli.

View Article and Find Full Text PDF

Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant .

Microbiol Spectr

January 2025

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Background: Antimicrobial resistance is a global public health emergency. Patients undergoing hematopoietic stem cell transplantation (HCT) are at increased risk for severe infections with multidrug-resistant (MDR) organisms, although more data are needed on the relative burden of MDR Enterobacterales (MDR-E) in immunocompromised populations. In this study, we compare the prevalence of Enterobacterales resistance in cultures from patients undergoing HCT with that of non-HCT patients seeking care at a large healthcare system in North Carolina, USA.

View Article and Find Full Text PDF

Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!