Background: Prader-Willi syndrome (PWS) is due to errors in genomic imprinting. PWS is recognised as the most common known genetic cause of life-threatening obesity. This report summarises the frequency and further characterises the PWS molecular classes and maternal age effects.
Methods: High-resolution microarrays, comprehensive chromosome 15 genotyping and methylation-specific multiplex ligation probe amplification were used to describe and further characterise molecular classes of maternal disomy 15 (UPD15) considering maternal age.
Results: We summarised genetic data from 510 individuals with PWS and 303 (60%) had the 15q11-q13 deletion; 185 (36%) with UPD15 and 22 (4%) with imprinting defects. We further characterised UPD15 findings into subclasses based on the presence (size, location) or absence of loss of heterozygosity (LOH). Additionally, significantly older mothers (mean age=32.5 years vs 27.7 years) were found in the UPD15 group (n=145) compared with the deletion subtype (n=200).
Conclusions: We report on molecular classes in PWS using advanced genomic technology in the largest cohort to date. LOH patterns in UPD15 may impact the risk of having a second genetic condition if the mother carries a recessive mutant allele in the isodisomic region on chromosome 15. The risk of UPD15 may also increase with maternal age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387113 | PMC |
http://dx.doi.org/10.1136/jmedgenet-2018-105301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!