Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis.

Bioresour Technol

Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patra, Greece; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece.

Published: September 2018

The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L was achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.04.109DOI Listing

Publication Analysis

Top Keywords

ethanol production
12
simultaneous saccharification
8
saccharification fermentation
8
co-cultures yeasts
8
yeasts saccharomyces
8
saccharomyces cerevisiae
8
cerevisiae pichia
8
pichia stipitis
8
production efficiency
8
ethanol
5

Similar Publications

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, C 1x), decursinol angelate (DA, C ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, C ~ 1000x).

View Article and Find Full Text PDF

Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.

View Article and Find Full Text PDF

Tailored recovery of antioxidant fractions enriched in caffeine and phenolic compounds from coffee pulp using ethanol-modified supercritical carbon dioxide.

Food Res Int

January 2025

Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain. Electronic address:

Coffee pulp (CP) is the by-product of coffee processing that urgently needs to be revalorized using sustainable technologies. This work applied a design of experiment (DoE) for modeling the extraction of bioactive compounds from CP using supercritical carbon dioxide (sc-CO) with ethanol as a co-solvent under variable conditions (temperature, pressure, and ethanol percentage). Considering extraction efficiency (per unit of CP) and extraction selectivity (per unit of extract), results showed that ethanol percentage significantly enhanced the efficiency of total phenolic content, as well as the selectivity of chlorogenic acid and protocatechuic acid (p < 0.

View Article and Find Full Text PDF

This study aimed to promote the valorization of lupin seeds by extracting both non-polar and polar fractions to produce a protein-rich flour suitable for food applications. Green extraction methods such as Supercritical Fluid Extraction (SFE) and SFE followed by gas-expanded liquid extraction with ethanol/CO mixtures were employed. SFE yielded lupin oil with extraction yields ranging from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!