Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.05.001 | DOI Listing |
J Genet Eng Biotechnol
December 2024
Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Electronic address:
Background: Sugarcane is host of many viral pathogens that affects its growth and productivity. High-throughput sequencing (HTS) is comprehensive diagnostic platform that permit the precise detection of viral pathogens to resolve the disease epidemiology of the crop, thus providing the phytosanitary status of plants. The current work was designed to comprehend the virome profiling of sugarcane belonging to five varieties collected from the major crop producing states in India.
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
State University of Maringá, Sustainability Graduate Program, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil.
The use of agro-industrial wastes as biosorbents is a promising alternative for sustainable, economical and effective adsorption. However, few studies evaluate the use of Brazilian agro-industrial waste as biosorbents without physicochemical pre-treatment. This study explored the potential of sugarcane bagasse (SCB) and rice husk waste (RHW) as low-cost biosorbents for yellow tartrazine dye removal.
View Article and Find Full Text PDFPlant Dis
December 2024
Guangxi University, College of Agriculture, 100 Daxue East Road, Nanning, Guangxi, China, 530004;
Microsc Res Tech
December 2024
Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.
Due to their widespread usage in recent years, synthetic dyes may be difficult to remove and pose a health concern. Bioadsorbents proved a low-cost and sustainable method for dye removal. In this study, straight yellow 26 is extracted from textile effluent using sugarcane bagasse.
View Article and Find Full Text PDFPLoS One
November 2024
Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
Sugarcane has been grown all around the world to meet sugar demands for industrial sector. The current sugar recovery percentage in sugarcane cultivars is dismally low which demands scientific efforts for improvements. Multiple approaches were adopted to enhance sugar contents in commercial sugarcane plants in contrast to conventional plant breeding methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!