High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipelineoptimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users' input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112344 | PMC |
http://dx.doi.org/10.1016/j.gpb.2018.04.004 | DOI Listing |
bioRxiv
December 2024
Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.
We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.
View Article and Find Full Text PDFMicroPubl Biol
November 2024
Pharmacology, University of South Alabama College of Medicine, Mobile, AL.
The excision of specific tRNA-derived small RNAs (tsRNAs), yRNA-derived small RNAs (ysRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) is now well established. Several reports have suggested many of these fragments function much like traditional microRNAs (miRNAs). That said, whereas the expressions of the majority of appreciably expressed miRNAs in HCT116 colon cancer cells are significantly decreased in individual knockouts (KOs) of DROSHA, DGCR8, XPO5, and DICER, on average, only 3.
View Article and Find Full Text PDFEnviron Epigenet
September 2024
Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
Environmentally induced epigenetic transgenerational inheritance of phenotypic variation and disease susceptibility requires the germ cell (sperm or egg) transmission of integrated epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA (ncRNA) actions. Previous studies have demonstrated that transgenerational exposure and disease-specific differential DNA methylation regions (DMRs) in sperm are observed and that ncRNA-mediated DNA methylation occurs. The current study was designed to determine if transgenerational exposure-specific ncRNAs exist in sperm.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York, USA.
Emerging small noncoding RNAs (sncRNAs), including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), are critical in various biological processes, such as neurological diseases. Traditional sncRNA-sequencing (seq) protocols often miss these sncRNAs due to their modifications, such as internal and terminal modifications, that can interfere with sequencing. We recently developed panoramic RNA display by overcoming RNA modification aborted sequencing (PANDORA-seq), a method enabling comprehensive detection of modified sncRNAs by overcoming the RNA modifications.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!