Aims: In cortical mammalian neurons, small fluctuations of intracellular pH (pHi) play a crucial role for inter- and intracellular signaling as well as for cellular and synaptic plasticity. Yet, there have been no respective data about humans. Thus, we investigated the interrelation of pHi and excitability of human cortical neurons.

Materials And Methods: Intracellular electrophysiological and pH-recordings were made in neurons in slices taken from brain tissue resected from the middle temporal gyrus of two male children (26 months and 35 months old) who suffered from pharmacotherapy-resistant temporal lobe epilepsy. To excite the tissue (n = 13), we used the 0-Mg2+/high-K+-in vitro epilepsy model producing robust epileptiform discharges (ED). To evoke an intracellular acidification (n = 12), we used the well-established propionate-model and applied 10 mM propionate to the bath solutions. In addition, we recorded the effects of other strongly related short-chain monocarboxylates (l-lactate (10 mM) and the ketone body DL-β-hydroxybutyrate (10 mM)) on ED and pHi.

Key Findings: The ED-frequency was reversibly reduced by propionate (n = 5), l-lactate (n = 5), or DL-β-hydroxybutyrate (n = 3), while the durations of EDs and their after-depolarizations increased. In parallel experiments, all three short-chain monocarboxylates (each n = 4) lowered the pHi of the neurons (n = 12) by 0.05-0.07 pH units which was temporally related to the reported changes in bioelectric activity.

Significance: A mild drop of the intraneuronal pH was associated with the control of even over-excited human neocortical tissue. This is identical with prior observations in non-human mammalian cortical neurons. Possible implications for neuroplasticity and the treatment of neuropsychiatric disorders are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.05.005DOI Listing

Publication Analysis

Top Keywords

short-chain monocarboxylates
12
over-excited human
8
human neocortical
8
neurons
5
small intraneuronal
4
intraneuronal acidification
4
acidification short-chain
4
monocarboxylates evidence
4
evidence inhibitory
4
inhibitory action
4

Similar Publications

Purpose: Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA).

View Article and Find Full Text PDF

Short- and medium-chain fatty acids (SMCFA) are monocarboxylic acids with a carbon chain length of 1-12 carbon atoms. They are mainly produced in humans by the gut microbiota, play crucial metabolic roles, are vital for intestinal health, and have multifaceted impact on immune and neurological functions. Accurate detection and quantification of SMCFA in different human biofluids is achieved using 3-nitro phenylhydrazine (3-NPH) derivatization of the free fatty acids followed by reverse phase liquid chromatography (RPLC) separation and detection by tandem mass spectrometry (MS/MS).

View Article and Find Full Text PDF
Article Synopsis
  • Leptospirosis is a re-emerging zoonotic disease that affects both humans and animals, often causing intestinal symptoms and highlighting the importance of gut microbiota in immune response and disease resistance.
  • Research indicates that short-chain fatty acids (SCFAs), particularly butyrate, play a protective role against leptospirosis by enhancing immune responses through increased reactive oxygen species (ROS) production.
  • The study presents a potential therapeutic pathway through the butyrate-MCT-HDAC3i-ROS signaling axis, suggesting this could be a target for developing strategies to prevent acute leptospirosis.
View Article and Find Full Text PDF

Effect of butyrate sources in a high-concentrate diet on rumen structure and function in growing rams.

Animal

September 2024

Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland. Electronic address:

Dietary butyrate is considered to have mostly positive impacts on the ruminal epithelium. However, its supplementation in a high-concentrate diet may not be justified as excessive ruminal butyrate may negatively affect the rumen. Furthermore, butyrate impact on the rumen may depend on its source.

View Article and Find Full Text PDF

Our previous study showed that heavy metal lead (Pb) exposure exacerbates high-fat-diet (HFD)-induced metabolic damage and significantly depletes the gut microbiota-derived metabolite short-chain fatty acid (SCFA) levels. However, it remains unclear whether SCFA is a key metabolite involved in accelerating adverse consequences after Pb exposure. In this study, we explored the effects of exogenous supplementation of acetate, propionate, and butyrate on a metabolic disorder model in Pb-exposed HFD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!