This article presents a classifier that leverages Wikipedia knowledge to represent documents as vectors of concepts weights, and analyses its suitability for classifying biomedical documents written in any language when it is trained only with English documents. We propose the cross-language concept matching technique, which relies on Wikipedia interlanguage links to convert concept vectors between languages. The performance of the classifier is compared to a classifier based on machine translation, and two classifiers based on MetaMap. To perform the experiments, we created two multilingual corpus. The first one, Multi-Lingual UVigoMED (ML-UVigoMED) is composed of 23,647 Wikipedia documents about biomedical topics written in English, German, French, Spanish, Italian, Galician, Romanian, and Icelandic. The second one, English-French-Spanish-German UVigoMED (EFSG-UVigoMED) is composed of 19,210 biomedical abstract extracted from MEDLINE written in English, French, Spanish, and German. The performance of the approach proposed is superior to any of the state-of-the art classifier in the benchmark. We conclude that leveraging Wikipedia knowledge is of great advantage in tasks of multilingual classification of biomedical documents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2018.04.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!