AI Article Synopsis

  • Chikungunya virus (CHIKV) poses a significant public health threat, and currently, there are no approved vaccines or antiviral treatments available.
  • The study focuses on nsP2pro, a viral protease crucial for the replication of CHIKV, revealing its crystal structure and highlighting its two main subdomains: a protease subdomain and a methyltransferase subdomain.
  • Key findings include that a flexible loop in the protein blocks access to its active site, and a specific mutation in one of the binding residues significantly impacts substrate recognition, providing insights for potential drug development targeting this protease.

Article Abstract

Chikungunya virus (CHIKV), a mosquito-borne pathogenic alphavirus is a growing public health threat. No vaccines or antiviral drug is currently available in the market for chikungunya treatment. nsP2pro, the viral cysteine protease, carries out an essential function of nonstructural polyprotein processing and forms four nonstructural proteins (nsPs) that makes the replication complex, hence constitute a promising drug target. In this study, crystal structure of nsP2pro has been determined at 2.59 Å, which reveals that the protein consists of two subdomains: an N-terminal protease subdomain and a C-terminal methyltransferase subdomain. Structural comparison of CHIKV nsP2pro with structures of other alphavirus nsP2 advances that the substrate binding cleft is present at the interface of two subdomains. Additionally, structure insights revealed that access to the active site and substrate binding cleft is blocked by a flexible interdomain loop in CHIKV nsP2pro. This loop contains His548, the catalytic residue, and Trp549 and Asn547, the residues predicted to bind substrate. Interestingly, mutation of Asn547 leads to three-fold increase in K confirming that Asn547 plays important role in substrate binding and recognition. This study presents the detailed molecular analysis and signifies the substrate specificity residues of CHIKV nsP2pro, which will be beneficial for structure-based drug design and optimization of CHIKV protease inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.05.007DOI Listing

Publication Analysis

Top Keywords

chikv nsp2pro
12
substrate binding
12
crystal structure
8
chikungunya virus
8
cysteine protease
8
active site
8
binding cleft
8
chikv
5
nsp2pro
5
substrate
5

Similar Publications

Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach.

Proc Natl Acad Sci U S A

October 2024

Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

Article Synopsis
  • Chikungunya virus (CHIKV) is a mosquito-borne virus causing major outbreaks, with no FDA-approved treatments available.
  • Researchers optimized a screening assay for CHIKV's essential protein nsP2 and identified 153 potential drug candidates, including RA-0002034.
  • RA-0002034 effectively inhibits CHIKV nsP2 activity and viral replication, making it a promising compound for future therapeutic development against CHIKV and similar viruses.
View Article and Find Full Text PDF

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya.

View Article and Find Full Text PDF

Unlabelled: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign.

View Article and Find Full Text PDF

Several neurotropic viruses are members of the flavivirus and alphavirus families. Infections caused by these viruses may cause long-term neurological sequelae in humans. The continuous emergence of infections caused by viruses around the world, such as the chikungunya virus (CHIKV) (Alphavirus genus), the zika virus (ZIKV) and the yellow fever virus (YFV) (both of the Flavivirus genus), warrants the development of new strategies to combat them.

View Article and Find Full Text PDF

In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases.

PLoS One

August 2021

Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil.

The potential outcome of flavivirus and alphavirus co-infections is worrisome due to the development of severe diseases. Hundreds of millions of people worldwide live under the risk of infections caused by viruses like chikungunya virus (CHIKV, genus Alphavirus), dengue virus (DENV, genus Flavivirus), and zika virus (ZIKV, genus Flavivirus). So far, neither any drug exists against the infection by a single virus, nor against co-infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!