Smoking releases cadmium (Cd), the metal toxicant which causes an imbalance in reactive oxygen species level in seminal plasma. This imbalance is envisaged to impair the sperm DNA morphology and thereby result in male infertility. In order to correlate this association, we performed in vitro and in silico studies and evaluated the influence of reactive oxygen species imbalance on sperm morphology impairments due to smoking. The study included 76 infertile smokers, 72 infertile non-smokers, 68 fertile smokers and 74 fertile non-smokers (control). Semen samples were collected at regular intervals from all the subjects. Semen parameters were examined by computer assisted semen analysis, quantification of metal toxicant by atomic absorption spectrophotometer, assessment of antioxidants through enzymatic and non-enzymatic methods, diagnosis of reactive oxygen species by nitro blue tetrazolium method and Cd influence on sperm protein by in vitro and in silico methods. Our analysis revealed that the levels of cigarette toxicants in semen were high, accompanied by low levels of antioxidants in seminal plasma of infertile smoker subjects. In addition the investigation of Cd treated sperm cells through scanning electronic microscope showed the mid piece damage of spermatozoa. The dispersive X-ray analysis to identify the elemental composition further confirmed the presence of Cd. Finally, the in-silico analysis on semenogelin sequences revealed the D-H-D motif which represents a favourable binding site for Cd coordination. Our findings clearly indicated the influence of Cd on reactive oxygen species leading to impaired sperm morphology leading to male infertility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repbio.2018.04.003DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
16
oxygen species
16
sperm morphology
12
vitro silico
12
infertile smokers
8
metal toxicant
8
seminal plasma
8
male infertility
8
influence reactive
8
sperm
6

Similar Publications

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission.

Nat Commun

December 2024

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.

Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!