Endoglucanase is one of the most important enzymes of the cellulase group.  Endoglucanase are involved in the catalytic hydrolysis of cellulose and plays a pivotal role in different sectors like pharmaceutical, textile, detergent, and food processing as well as paper and pulp industry. With consumers getting more and more aware of environmental issues, industries find enzymes as a better option over other chemical catalysts. In the current research different thermophilic fungal strains were isolated from the different sources. Qualitative screening was carried out on the basis of cellulose hydrolysis zone. The quantitative screening was carried out employing solid state fermentation.  The fungal culture, showing highest EG potential was selected identified and assigned the code Aspergillus fumigatus BBT2. Different fermentation media were evaluated and M 2 containing wheat bran gave maximum EG production. The maximal enzyme productivity was recorded in 72 hours, 40°C, pH 5, inoculum size 1.5ml, and moisture content (1:1). Glucose (1%) and peptone (1%) were optimized as best carbon and nitrogen sources, respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

solid state
8
screening carried
8
influence medium
4
medium composition
4
composition physical
4
physical factors
4
factors enhanced
4
enhanced production
4
production endoglucanase
4
endoglucanase locally
4

Similar Publications

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Probing the physical hallmarks of cancer.

Nat Methods

January 2025

Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks.

View Article and Find Full Text PDF

A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8 T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells.

View Article and Find Full Text PDF

Research on pancreatic cancer has transformed with the advent of organoid technology, providing a better platform that closely mimics cancer biology in vivo. This review highlights the critical advancements facilitated by pancreatic organoid models in understanding disease progression, evaluating therapeutic responses, and identifying biomarkers. These three-dimensional cultures enable the proper recapitulation of the cellular architecture and genetic makeup of the original tumors, providing insights into the complex molecular and cellular dynamics at various stages of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

All-solid-state Li-S batteries with fast solid-solid sulfur reaction.

Nature

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, China.

With promises for high specific energy, high safety and low cost, the all-solid-state lithium-sulfur battery (ASSLSB) is ideal for next-generation energy storage. However, the poor rate performance and short cycle life caused by the sluggish solid-solid sulfur redox reaction (SSSRR) at the three-phase boundaries remain to be solved. Here we demonstrate a fast SSSRR enabled by lithium thioborophosphate iodide (LBPSI) glass-phase solid electrolytes (GSEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!