Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish.

Environ Pollut

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. Electronic address:

Published: September 2018

Contamination from lower brominated PBDEs is ubiquitous in the environments. However, their effects on gut microbiota and intestinal health have not yet been investigated. This study exposed adult zebrafish to an environmentally realistic concentration of pentaBDE mixture (DE-71) at 5.0 ng/L for 7 days, after which metagenomic sequencing of the intestinal microbiome was conducted and host physiological activities in the intestine and liver were also examined. The results showed that acute exposure to DE-71 significantly shifted the gut microbial community in a sex-specific manner. Certain genera (e.g., Mycoplasma, Ruminiclostridium, unclassified Firmicutes sensu stricto, and Fusobacterium) disappeared from the DE-71-exposed intestines, resulting in decreased bacterial diversity. Bacterial metabolic functions in guts were also affected by DE-71, namely those covering energy metabolism, virulence, respiration, cell division, cell signaling, and stress response. In addition, measurement of diverse sensitive biomarkers showed that the health of male intestines was remarkably compromised by the DE-71 exposure, as indicated by the disruption to its neural signaling (serotonin), epithelial barrier integrity (tight junction protein 2), inflammatory response (interleukin 1β), oxidative stress and antioxidant capacity, as well as detoxifying potential (ethoxyresorufin-O-deethylase activity). However, female intestines maintained intact physiological activities. Compared to the direct impact on intestines, a latent effect of DE-71 was observed in livers. Co-occurrence network analysis demonstrated that the gut bacteria vigorously interacted to establish the fittest community under DE-71 stress by promoting the reproduction of favorable genera, while diminishing the survival of unfavorable ones. Significant correlations between the zebrafish gut microbiota and physiological activities (e.g., oxidative stress, detoxification, neurotransmission, and epithelial integrity) were also observed. Overall, this study has demonstrated, for the first time, the high susceptibility of gut microbiota and intestinal health of zebrafish to DE-71, thus warranting more work to reveal its mode of toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.04.062DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
physiological activities
12
acute exposure
8
environmentally realistic
8
realistic concentration
8
health zebrafish
8
microbiota intestinal
8
intestinal health
8
oxidative stress
8
de-71
7

Similar Publications

Gut microbiota and its impact on critical illness.

Curr Opin Crit Care

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).

Purpose Of Review: This narrative review discusses the mechanisms connecting gut dysbiosis to adverse clinical outcomes in critically ill patients and explores potential therapeutic strategies.

Recent Findings: In recent years, the study of microbiota in ICUs has gained attention because of its potential effects on patient outcomes. Critically ill patients often face severe conditions, which can compromise their immune systems and lead to opportunistic infections from bacteria typically harmless to healthy individuals.

View Article and Find Full Text PDF

Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.

View Article and Find Full Text PDF

Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).

Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.

View Article and Find Full Text PDF

To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (10 CFU/mL) during lactation.

View Article and Find Full Text PDF

Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease.

Alzheimers Dement

January 2025

Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Xicheng District, Beijing, China.

Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!