Background: The exploration of the biological assessment of technical azadirachtin, a tetranortritarpinoid from the neem seed kernel, was reviewed. The present study was, therefore, designed to evaluate the dose-dependent in vitro effects of azadirachtin-A, particularly on the functional studies and determination of molecular events, which are critical in the process of sperm capacitation.

Methods: To assess the effects of the azadirachtin-A on the functional studies, sperm capacitation, the total sperm adenosine triphosphate levels, acrosome reaction (AR), the sperm-egg interaction and the determination of molecular events like cyclic adenosine-3',5'-monophosphate and calcium levels, the appropriate volumes of the sperm suspension were added to the medium to a final concentration of 1×106 sperm/mL and incubated in a humidified atmosphere of 5% CO2 in air at 37°C. The increasing quantities 0.5-2.0 mM/mL and the equivalent volumes of 50% dimethyl sulfoxide were added to the control dishes prior to the addition of spermatozoa and then observed at various time-points for motility and other analyses.

Results: Results revealed the dose- and time-dependent decrease in the functional consequence of capacitation, i.e. the percentage of motile spermatozoa, motility score and sperm motility index, levels of molecular events in spermatozoa, followed by declined spontaneous AR leading to lesser binding of the cauda epididymal sperm to the Zona pellucida.

Conclusions: The findings confirm the inhibition of rat sperm motility by blocking some biochemical pathways like energy utilization. They also demonstrate that sperm capacitation is associated with the decrease in AR and that the levels of molecular events in spermatozoa can guide us towards the development of a new male contraceptive constituent.

Download full-text PDF

Source
http://dx.doi.org/10.1515/jbcpp-2017-0014DOI Listing

Publication Analysis

Top Keywords

molecular events
16
effects azadirachtin-a
8
azadirachtin-a functional
8
functional studies
8
determination molecular
8
sperm
8
sperm capacitation
8
sperm motility
8
levels molecular
8
events spermatozoa
8

Similar Publications

Purpose: Glioblastoma (GBM), the most common malignant tumor of the central nervous system (CNS) in adults, continues to result in poor survival rates despite standard treatment. Advancements in understanding GBM's molecular complexity have increased interest in targeted therapeutic approaches. This retrospective, single-center, single-arm study combined nimotuzumab and bevacizumab with radiotherapy (RT) and temozolomide (TMZ) for the treatment of newly diagnosed GBM.

View Article and Find Full Text PDF

Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.

View Article and Find Full Text PDF

Identification of cellular signatures associated with chinese hamster ovary cell adaptation for secretion of antibodies.

Comput Struct Biotechnol J

December 2024

Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK.

The secretory capacity of Chinese hamster ovary (CHO) cells remains a fundamental bottleneck in the manufacturing of protein-based therapeutics. Unconventional biological drugs with complex structures and processing requirements are particularly problematic. Although engineered vector DNA elements can achieve rapid and high-level therapeutic protein production, a high metabolic and protein folding burden is imposed on the host cell.

View Article and Find Full Text PDF

We report the case of a 73-year-old man with progressive dyspnea and acute respiratory failure. Imaging revealed extensive infiltrative shadows in the right lung. A bronchoscopic biopsy confirmed primary lung adenocarcinoma harboring the BRAF V600E mutation.

View Article and Find Full Text PDF

Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury.

Front Immunol

December 2024

Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.

Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially . This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!