Lung morphometry using hyperpolarized Xe multi-b diffusion MRI with compressed sensing in healthy subjects and patients with COPD.

Med Phys

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.

Published: July 2018

Purpose: To demonstrate the feasibility of compressed sensing (CS) to accelerate the acquisition of hyperpolarized (HP) Xe multi-b diffusion MRI for quantitative assessments of lung microstructural morphometry.

Methods: Six healthy subjects and six chronic obstructive pulmonary disease (COPD) subjects underwent HP Xe multi-b diffusion MRI (b = 0, 10, 20, 30, and 40 s/cm ). First, a fully sampled (FS) acquisition of HP Xe multi-b diffusion MRI was conducted in one healthy subject. The acquired FS dataset was retrospectively undersampled in the phase encoding direction, and an optimal twofold undersampled pattern was then obtained by minimizing mean absolute error (MAE) between retrospective CS (rCS) and FS MR images. Next, the FS and CS acquisitions during separate breath holds were performed on five healthy subjects (including the above one). Additionally, the FS and CS synchronous acquisitions during a single breath hold were performed on the sixth healthy subject and one COPD subject. However, only CS acquisitions were conducted in the rest of the five COPD subjects. Finally, all the acquired FS, rCS and CS MR images were used to obtain morphometric parameters, including acinar duct radius (R), acinar lumen radius (r), alveolar sleeve depth (h), mean linear intercept (L ), and surface-to-volume ratio (SVR). The Wilcoxon signed-rank test and the Bland-Altman plot were employed to assess the fidelity of the CS reconstruction. Moreover, the t-test was used to demonstrate the effectiveness of the multi-b diffusion MRI with CS in clinical applications.

Results: The retrospective results demonstrated that there was no statistically significant difference between rCS and FS measurements using the Wilcoxon signed-rank test (P > 0.05). Good agreement between measurements obtained with the CS and FS acquisitions during separate breath holds was demonstrated in Bland-Altman plots of slice differences. Specifically, the mean biases of the R, r, h, L , and SVR between the CS and FS acquisitions were 1.0%, 2.6%, -0.03%, 1.5%, and -5.5%, respectively. Good agreement between measurements with the CS and FS acquisitions was also observed during the single breath-hold experiments. Furthermore, there were significant differences between the morphometric parameters for the healthy and COPD subjects (P < 0.05).

Conclusions: Our study has shown that HP Xe multi-b diffusion MRI with CS could be beneficial in lung microstructural assessments by acquiring less data while maintaining the consistent results with the FS acquisitions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.12944DOI Listing

Publication Analysis

Top Keywords

multi-b diffusion
20
diffusion mri
20
healthy subjects
12
copd subjects
12
hyperpolarized multi-b
8
compressed sensing
8
healthy subject
8
rcs images
8
acquisitions separate
8
separate breath
8

Similar Publications

Purpose: This case report aims to present a rare case of endometrial carcinosarcoma, a highly malignant tumor with a poor prognosis. The primary objective is to describe this unique case's clinical presentation, multimodal magnetic resonance imaging (MRI) features, typical histopathological characteristics and surgical treatment.

Methods: A detailed analysis of the patient's medical history, preoperative imaging evaluation, and treatment approach was conducted.

View Article and Find Full Text PDF

Novel MRI-based Hyper-Fused Radiomics for Predicting Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer.

Acad Radiol

January 2025

Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.). Electronic address:

Rationale And Objectives: To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).

Materials And Methods: Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI.

View Article and Find Full Text PDF

Bi-exponential diffusion-weighted imaging for differentiating high-grade gliomas from solitary brain metastases: a VOI-based histogram analysis.

Sci Rep

December 2024

The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, Shanxi, People's Republic of China.

This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI (T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) and enhanced tumor area (ETA) were selected for analysis.

View Article and Find Full Text PDF

This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.

View Article and Find Full Text PDF

The Restriction Spectrum Imaging restriction score (RSIrs) has been shown to improve the accuracy for diagnosis of clinically significant prostate cancer (csPCa) compared to standard DWI. Both diffusion and T properties of prostate tissue contribute to the signal measured in DWI, and studies have demonstrated that each may be valuable for distinguishing csPCa from benign tissue. The purpose of this retrospective study was to (1) determine whether prostate T varies across RSI compartments and in the presence of csPCa, and (2) evaluate whether csPCa detection with RSIrs is improved by acquiring multiple scans at different TEs to measure compartmental T (cT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!