Purpose: This meta-analysis was performed to clarify whether the two single nucleotide polymorphisms (ApaI and BsmI) in vitamin D receptor (VDR) gene conferred susceptibility to adolescent idiopathic scoliosis (AIS).
Methods: A comprehensive literature search in five online databases (PubMed, EMBASE, ISI Web of Science, CNKI, and Wanfang) was performed to identify studies that analyzed the association between VDR gene polymorphisms and risk of AIS. Observational studies met the predetermined inclusion criteria were selected for meta-analysis. The most appropriate genetic model was identified using a genetic model-free approach. Meta-analysis was performed using RevMan 5.3 software.
Results: Five eligible studies were included in this meta-analysis, which involved a total of 717 cases and 554 controls. A statistically significant association was observed between BsmI polymorphism and AIS (OR 1.90, 95% CI 1.32, 2.62). In subgroup analysis by ethnicity, the association between BsmI polymorphism and AIS was significant in Asians (OR 2.06, 95% CI 1.56, 2.73) but not in Caucasians (OR 0.70, 95% CI 0.23, 2.19). However, the ApaI polymorphism was not associated with AIS. Moreover, no evidence of association between BMD and the two VDR gene polymorphisms was detected.
Conclusions: Meta-analysis of existing data suggested that BsmI was associated with increased risk of AIS in Asian populations. Nevertheless, further studies with rigorous design and more ethnic groups are encouraged to validate our findings. These slides can be retrieved under Electronic Supplementary Material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00586-018-5614-0 | DOI Listing |
Cancer Epidemiol
January 2025
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Background: The relationship between vitamin D and prostate cancer has primarily been characterized among White men. Black men, however, have higher prostate cancer incidence and mortality rates, chronically low circulating vitamin D levels, and ancestry-specific genetic variants in vitamin D-related genes. Here, we examine critical genes in the vitamin D pathway and prostate cancer risk in Black men.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.
View Article and Find Full Text PDFScand J Immunol
January 2025
LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.
View Article and Find Full Text PDFGinekol Pol
January 2025
Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Poland, Poland.
Objectives: Hyperandrogenism is a frequently recognized endocrine imbalance in which there is excessive production of androgens. The purpose of the study was to investigate the impact of vitamin D receptor (VDR) gene polymorphisms on chosen bone metabolism and biochemical parameters in women with hyperandrogenism.
Material And Methods: Eighty young females with hyperandrogenism were enrolled in the study, in whom selected parameters of bone turnover, endocrine and metabolic parameters were determined.
Heliyon
January 2025
ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India.
Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!