Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00497-018-0336-3 | DOI Listing |
J Agric Food Chem
December 2024
Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China.
Safflower ( L.) is a valuable oil crop due to its bioactive ingredients and high linoleic acid content, which contribute to its antioxidant properties and potential for preventing atherosclerosis. Current research on safflower focuses on understanding the biosynthesis of seed oil through omics strategies, yet there is a lack of comprehensive knowledge of the dynamic changes in lipids and the regulatory mechanisms during seed development.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Wheat domestication and subsequent genetic improvement have yielded cultivated species with larger seeds compared to wild ancestors. Increasing thousand kernel weight (TKW) remains a crucial goal in many wheat breeding programs. To identify genomic regions influencing TKW across diverse genetic populations, we performed a comprehensive meta-analysis of quantitative trait loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies over recent decades.
View Article and Find Full Text PDFArch Razi Inst
June 2024
School of Life Science, Central University of Karnataka, kalaburagi-585367, Karnataka, India.
Nature is a valuable resource, supplying remedies for the treatment of all diseases. Plant kingdom stands for a plethora of natural compounds that are well known for their utilization in therapeutic applications. They may pave the way for the development of new mediators with appropriate efficacy in many pathological disorders in the future.
View Article and Find Full Text PDFBMC Genomics
December 2024
School of Life Sciences, Hebei University, Baoding, Hebei, 071000, China.
Background: Myogenic factor 6 (Myf6) plays an important role in muscle growth and differentiation. In aquatic animals and livestock, Myf6 contributes to improving meat quality and strengthening the accumulation of muscle flavor substances. However, studies on Myf6 gene polymorphisms in crustaceans have not been reported.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.
Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!