Emerging 3D printing technology permits innovative approaches to manufacture cartilage scaffolds associated with layer-by-layer mechanical property adaptation. However, information about gradients of mechanical properties in human articular cartilage is limited. In this study, we quantified a zone-dependent change of local elastic modulus of human femoral condyle cartilage by using an instrumented indentation technique. From the cartilage superficial zone towards the calcified layer, a gradient of elastic modulus values between 0.020 ± 0.003 MPa and 6.44 ± 1.02 MPa was measured. To validate the tissue quality, the histological tissue composition was visualized by glycosaminoglycan and collagen staining. This work aims to introduce a new protocol to investigate the zone-dependent mechanical properties of graded structures, such as human articular cartilage. From this knowledge, better cartilage repair strategies could be tailored in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-018-6066-0 | DOI Listing |
Calcif Tissue Int
January 2025
Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA.
Bone mechanical function is determined by multiple factors, some of which are still being elucidated. Here, we present a multivariate analysis of the role of bone tissue composition in the proximal femur stiffness of cadaver bones (n = 12, age 44-93). Stiffness was assessed by testing under loading conditions simulating a sideways fall onto the hip.
View Article and Find Full Text PDFMinerva Dent Oral Sci
January 2025
School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy -
Alginates are widely used in dentistry for various applications due to their favorable properties, including ease of use, cost-effectiveness, and patient comfort. They are commonly employed for preliminary impressions of oral structures in dental practice. This study aims to assess the impact of different factors on the performance of alginate impression materials in dentistry.
View Article and Find Full Text PDFPurpose: To compare remineralisation efficacy between silver diamine fluoride (SDF) combined with potassium iodide (KI) and sodium fluoride (NaF) varnish using hydroxyapatite (HAP) artificial white spot lesions (AWSLs) demineralisation model.
Materials And Methods: A total of 25 HAP disks was randomly divided into five groups (n = 5): baseline, AWSLs, deionized water (DW), SDF-KI or F-varnish. After AWSLs were developed, the specimen was treated with either deionized water, SDF-KI or F-varnish.
Small
January 2025
Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!