We have reported that recombinant biglycan (BGN) core protein accelerates bone formation in vivo by enhancing bone morphogenetic protein (BMP)-2 function. The purpose of the present study was to identify the specific domain ("effector") within the BGN core protein that facilitates BMP-2 osteogenic function. Thus, we generated various recombinant and synthetic peptides corresponding to several domains of BGN, and tested their effects on BMP-2 functions in vitro. The results demonstrated that the leucine-rich repeats 2-3 domain (LRR2-3) of BGN significantly enhanced the BMP-2 induced Smad1/5/9 phosphorylation, osteogenic gene expression, and alkaline phosphatase activity in myogenic C2C12 cells. Furthermore, addition of LRR2-3 to osteoblastic MC3T3-E1 cells accelerated in vitro mineralization without compromising the quality of the mineral and matrix. These data indicate that LRR2-3 is, at least in part, responsible for BGN's ability to enhance BMP-2 osteogenic function, and it could be useful for bone tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935668PMC
http://dx.doi.org/10.1038/s41598-018-25279-xDOI Listing

Publication Analysis

Top Keywords

bmp-2 osteogenic
12
osteogenic function
12
facilitates bmp-2
8
bgn core
8
core protein
8
bmp-2
6
identification effector
4
effector domain
4
domain biglycan
4
biglycan facilitates
4

Similar Publications

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.

View Article and Find Full Text PDF

Ankylosing spondylitis (AS) is a chronic inflammatory disease involving the spine and bone joints, which is characterized by hyperosteogeny, ossification of ligaments, and ankylosis. Quercetin is a natural polyphenolic compound with various biological activities such as antioxidant, anti-inflammatory, and anti-tumor. It was to explore the effect of quercetin on AS ossification and its molecular mechanism.

View Article and Find Full Text PDF

Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.

View Article and Find Full Text PDF

Aim: We aimed to investigate whether α-ketoglutarate (AKG) can promote autophagic activity under a peri-implant condition to enhance the osseointegration of dental implant in rats with osteoporosis (OP).

Methods: Con, Model and AKG groups were established for the random allocation of thirty rats ( = 10). Their bone metabolism indicators were measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!