Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.

Appl Environ Microbiol

Collection of Cyanobacteria, Department of Microbiology, The Institut Pasteur, Paris, France

Published: July 2018

Cyanobacteria can synthesize alkanes and alkenes, which are considered to be infrastructure-compatible biofuels. In terms of physiological function, cyanobacterial hydrocarbons are thought to be essential for membrane flexibility for cell division, size, and growth. The genetic basis for the biosynthesis of terminal olefins (1-alkenes) is a modular type I polyketide synthase (PKS) termed olefin synthase (Ols). The modular architectures of Ols and structural characteristics of alkenes have been investigated only in a few species of the small percentage (approximately 10%) of cyanobacteria that harbor putative Ols pathways. In this study, investigations of the domains, modular architectures, and phylogenies of Ols in 28 cyanobacterial strains suggested distinctive pathway evolution. Structural feature analyses revealed 1-alkenes with three carbon chain lengths (C, C, and C). In addition, the total cellular fatty acid profile revealed the diversity of the carbon chain lengths, while the fatty acid feeding assay indicated substrate carbon chain length specificity of cyanobacterial Ols enzymes. Finally, analyses suggested that the N terminus of the modular Ols enzyme exhibited characteristics typical of a fatty acyl-adenylate ligase (FAAL), suggesting a mechanism of fatty acid activation via the formation of acyl-adenylates. Our results shed new light on the diversity of cyanobacterial terminal olefins and a mechanism for substrate activation in the biosynthesis of these olefins. Cyanobacterial terminal olefins are hydrocarbons with promising applications as advanced biofuels. Despite the basic understanding of the genetic basis of olefin biosynthesis, the structural diversity and phylogeny of the key modular olefin synthase (Ols) have been poorly explored. An overview of the chemical structural traits of terminal olefins in cyanobacteria is provided in this study. In addition, we demonstrated by fatty acid feeding assays that cyanobacterial Ols enzymes might exhibit substrate carbon chain length specificity. Furthermore, by performing bioinformatic analyses, we observed that the substrate activation domain of Ols exhibited features typical of a fatty acyl-adenylate ligase (FAAL), which activates fatty acids by converting them to fatty acyl-adenylates. Our results provide further insight into the chemical structures of terminal olefins and further elucidate the mechanism of substrate activation for terminal olefin biosynthesis in cyanobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007117PMC
http://dx.doi.org/10.1128/AEM.00425-18DOI Listing

Publication Analysis

Top Keywords

terminal olefins
20
carbon chain
16
fatty acid
16
substrate activation
12
ols
9
terminal olefin
8
genetic basis
8
olefin synthase
8
synthase ols
8
modular architectures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!