Treatment of food-producing animals with antimicrobial drugs (AMD) is controversial because of concerns regarding promotion of antimicrobial resistance (AMR). To investigate this concern, resistance genes in metagenomic bovine fecal samples during a clinical trial were analyzed to assess the impacts of treatment on beef feedlot cattle resistomes. Four groups of cattle were exposed, using a 2-by-2 factorial design, to different regimens of antimicrobial treatment. Injections of ceftiofur crystalline-free acid (a third-generation cephalosporin) were used to treat all cattle in treatment pens or only a single animal, and either chlortetracycline was included in the feed of all cattle in a pen or the feed was untreated. On days 0 and 26, respectively, pre- and posttrial fecal samples were collected, and resistance genes were characterized using shotgun metagenomics. Treatment with ceftiofur was not associated with changes to β-lactam resistance genes. However, cattle fed chlortetracycline had a significant increase in relative abundance of tetracycline resistance genes. There was also an increase of an AMR class not administered during the study, which is a possible indicator of coselection of resistance genes. Samples analyzed in this study had previously been evaluated by culture characterization ( and ) and quantitative PCR (qPCR) of metagenomic fecal DNA, which allowed comparison of results with this study. In the majority of samples, genes that were selectively enriched through culture and qPCR were not identified through shotgun metagenomic sequencing in this study, suggesting that changes previously documented did not reflect changes affecting the majority of bacterial genetic elements found in the predominant fecal resistome. Despite significant concerns about public health implications of AMR in relation to use of AMD in food animals, there are many unknowns about the long- and short-term impact of common uses of AMD for treatment, control, and prevention of disease. Additionally, questions commonly arise regarding how to best measure and quantify AMR genes in relation to public health risks and how to determine which genes are most important. These data provide an introductory view of the utility of using shotgun metagenomic sequencing data as an outcome for clinical trials evaluating the impact of using AMD in food animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007121PMC
http://dx.doi.org/10.1128/AEM.00610-18DOI Listing

Publication Analysis

Top Keywords

resistance genes
20
feedlot cattle
8
cattle treatment
8
genes
8
fecal samples
8
shotgun metagenomic
8
metagenomic sequencing
8
public health
8
amd food
8
food animals
8

Similar Publications

Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.).

View Article and Find Full Text PDF

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!