Objective: In HIV+ individuals, the virus enters the central nervous system and invades innate immune cells, producing important changes that result in neurological deficits. We aimed to determine whether HIV plays a direct role in neuronal excitability. Of the HIV peptides, Tat is secreted and acts in other cells. In order to examine whether the HIV Tat can modify neuronal excitability, we exposed primary murine hippocampal neurons to that peptide, and tested its effects on the intrinsic membrane properties, 4 and 24 h after exposure.

Results: The exposure of hippocampal pyramidal neurons to Tat for 4 h did not alter intrinsic membrane properties. However, we found a strong increase in intrinsic excitability, characterized by increase of the slope (Gain) of the input-output function, in cells treated with Tat for 24 h. Nevertheless, Tat treatment for 24 h did not alter the resting membrane potential, input resistance, rheobase and action potential threshold. Thus, neuronal adaptability to Tat exposure for 24 h is not applicable to basic neuronal properties. A restricted but significant effect on coupling the inputs to the outputs may have implications to our knowledge of Tat biophysical firing capability, and its involvement in neuronal hyperexcitability in neuroHIV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935945PMC
http://dx.doi.org/10.1186/s13104-018-3376-8DOI Listing

Publication Analysis

Top Keywords

intrinsic excitability
8
neuronal excitability
8
intrinsic membrane
8
membrane properties
8
tat
7
neuronal
6
hiv-1 tat
4
tat alters
4
alters neuronal
4
intrinsic
4

Similar Publications

The hippocampus has a known role in learning and memory, with the ventral subregion supporting many learning tasks involving affective responding, including fear conditioning. Altered neuronal intrinsic excitability reflects experience-dependent plasticity that supports learning-related behavioral changes. Such changes have previously been observed in the dorsal hippocampus following fear conditioning, but little work has examined the effect of fear conditioning on ventral hippocampal intrinsic plasticity.

View Article and Find Full Text PDF

With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

Functional properties of aged hypothalamic cells.

Vitam Horm

January 2025

Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia. Electronic address:

The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals.

View Article and Find Full Text PDF

Calliphoridae, or blow flies, are of much ecological and practical importance given their roles in decompositional ecology, medical and veterinary myiasis, and forensic entomology. As ephemeral and rapidly developing species, adults are frequently not present for identification, but puparia (the remaining outer integument of the third instar larvae) are frequently found. These heavily sclerotized remains are stable in the environment but they are of a conservative character.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!