Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.03.079 | DOI Listing |
ACS Omega
January 2025
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
In waterflooding development of narrow channel reservoirs, the water cut rises quickly, and the reservoir becomes nearly fully flooded, yet oil recovery remains low. The narrow strip sand body and long-term water injection create a complex oil and water distribution, making it difficult to evaluate the degree of reservoir utilization during waterflooding. This paper establishes a practical streamline method to quantitatively characterize the waterflooding mobilization degree of narrow channel reservoirs.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany. Electronic address:
Decades of research demonstrated that microbes can remediate petroleum-contaminated environments through biodegradation of hydrocarbons. Recent studies have applied signature metabolite analysis to investigate hydrocarbon-contaminated sites, focusing primarily on aquifer systems and metabolites of relatively water-soluble monoaromatic hydrocarbons. However, the number of studies involving non-targeted analysis and identification of individual metabolites in environmental samples is limited.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Range and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran.
Soil seed bank (SSB) is valuable reserves of seeds hidden in the soil and are especially important for the preservation and establishment of vegetation under adverse environmental conditions. However, there is a lack of knowledge on the effects of restoration measures on SSB, especially in arid ecosystems. Here, we assess the impacts of oil mulching (1 and 3 years after mulching) and plantations (15-year-old) on the diversity and composition of SSB and aboveground vegetation (AGV) in comparison with those in non-restored areas (i.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi 830017, China.
Lead (Pb) is classified as a prevalent metallic pollutant, significantly impacting the ecological environment, especially human health. Consequently, it is crucial to develop adsorbent materials that are environmentally friendly, cost-effective, and which possess high selectivity. This study aims to fabricate a Pb(II)-imprinted acrylonitrile-co-acrylic acid composite material by using modified sand particles as the carrier, and then to investigate its properties.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!