Building development in cities creates a geochemical heterogeneity via redistributing the atmospheric fluxes of pollutants and forming sedimentation zones in urban soils and other depositing media. However, the influence of buildings on the urban environment pollution is poorly understood. The aim of this study is to evaluate the barrier functions of urban development by means of a joint analysis of the contents of heavy metals and metalloids in the upper horizon of urban soils, their physicochemical properties, and the parameters of the buildings. The soil-geochemical survey was performed in the residential area of the Moscow's Eastern Administrative District (Russia). The parameters of the buildings near sampling points were determined via processing data from the OpenStreetMap database, 2GIS databases and GeoEye-1 satellite image. A high level of soil contamination with Cd, W, Bi, Zn, As, Cr, Sb, Pb, Cu was revealed, depending on building parameters. A protective function of the buildings for yards is manifested in the decreasing concentrations of As, Cd, Co, Cr, Mo, Ni, Pb, Sb, Sn, W by 1.2-3 times at distances of <23-36 m from the buildings with their total area ≥660 m and the height ≥7.5-21 m. An opposite effect which enhances concentrations of Bi, Cd, Co, Cr, Cu, Mo, Pb, Sb, Sn, W, Zn by 1.2-1.9 times is seen in "well-shaped" yards acting as traps under similar distances and heights, but at their average area ≥118-323 m, and total area ≥323-1300 m. The impact of these two building patterns on the soil contamination is only seen for certain directions of atmospheric flows. Buildings located in the northwestern sector relative to the sampling point protect the latter from the aerial pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.04.308 | DOI Listing |
J Hazard Mater
December 2024
Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China.
Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are extensively documented within antibiotic pharmaceutical factories. Notably, non-antibiotic pharmaceuticals also represent a significant portion of the pharmaceuticals market. However, the comparative analyses of soil-borne ARG profiles and associated risks in different categories of pharmaceutical factories remain limited.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
State Key Laboratory of Urban and Regional Ecology, Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China.
Microplastics (MPs) pose significant threats to ecosystems and human health due to their persistence and widespread distribution. This paper provides a comprehensive review of sampling methods for MPs in aquatic environments, soils, and biological samples, assessing pre-treatment procedures like digestion and separation. It examines the application and limitations of identification techniques, including microscopic observation, spectroscopic analysis, and thermal analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!