We studied the influence of anomalous meteorological and hydrological conditions that occurred in the Gulf of Trieste from March 2006 to February 2007 on phytoplankton structure and function. We computed monthly mean (or median) air temperature, total precipitation, wind speed, river discharge, seawater temperature, salinity, photosynthetic available radiation (PAR), cyanobacteria, nano- and microphytoplankton abundances during the study year and compared them to climatological (1999-2014 for PAR; 1999-2007 for nanophytoplankton; 1998-2015 for the other variables) mean/median data. We then related the cyanobacteria (0.2-2 μm), nano- (2-20 μm) and microphytoplankton (20-200 μm) of the study year to inorganic nutrient concentrations. Median river inputs in October and November were 9- and 15-fold lower, respectively, than the time series medians, with consequent high salinity from May to November (up to +1.26 compared to the climatological data). Monthly mean seawater temperatures were lower than the climatological values (-2.95 °C at the surface) from March to August 2006 and higher (+2.15 °C at the surface) from September to February 2007. Reductions in freshwater input and nutrient depletion were likely responsible for a decrease in microphytoplankton (median annual abundance over 60% lower than the climatologic median) and cyanobacteria (up to 47% lower than the climatology). Significant seasonal differences in cyanobacteria and microphytoplankton abundances (R = 0.52; p < 0.05), as well as in seawater temperature and salinity (R = 0.73; p < 0.05) between the study period and the climatology were highlighted. The late spring diatom bloom was not reflected in high photosynthetic rates whereas an unusually high primary production was estimated in November (7.11 ± 1.01 μgC L h), when a mucilage event occurred due to very stable atmospheric and oceanographic conditions. The typical seasonal succession of pelagic phototrophs (micro-, nanophytoplankton and cyanobacteria) was altered since an exceptional cyanobacteria bloom first developed in April, followed by a delayed diatom bloom in May.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.04.205 | DOI Listing |
J Environ Manage
January 2025
School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.
Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
Hydrological forecasting is of great significance to regional water resources management and reservoir operation. Climate change has increased the complexity and difficulty of hydrological forecasting. In this study, a hybrid explainable streamflow forecasting model based on CNN-LSTM-Attention was established for five typical river source regions in the eastern Qinghai-Tibet Plateau (EQTP).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
Climate change, population growth, and agricultural intensification are increasing nitrogen (N) inputs, while driving the loss of inland water bodies that filter excess N. However, the interplay between N inputs and water body dynamics, and its implications for water quality remain poorly understood. Analyzing data from 1995 to 2015 across China, here, we find a 71% reduction in the area of small (<10 m) water bodies (SWB), primarily in high-N-input agricultural regions.
View Article and Find Full Text PDFMar Environ Res
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:
Water and suspended particulate matter (SPM) were collected from Xiaoqing Estuary and its adjacent waters in August 2022 to study the spatial distribution and risk assessment of Hg and As. The content of Hg in SPM samples ranged from 4.7152 to 446.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Dissolved oxygen (DO) is essential for the health of aquatic ecosystems, supporting biogeochemical cycles and the decomposition of organic matter. However, continuous untreated external inputs from illicit discharges or sewer overflows, coupled with inadequate ecological base flow, have led to widespread river deoxygenation and serious ecological crises. This study demonstrates that chlorinated wastewater treatment plant (WWTP) effluent can significantly enhance DO levels in downstream rivers, particularly in areas with high pollution loads or poor ecological base flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!