Theacrine protects against nonalcoholic fatty liver disease by regulating acylcarnitine metabolism.

Metabolism

Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China. Electronic address:

Published: August 2018

Objective: Acylcarnitine metabolism disorder contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). There are, however, few ideal medications for NAFLD, which work by targeting acylcarnitine metabolism. The aim of this study was to investigate the protective effects of theacrine, a rare purine alkaloid isolated from Camellia assamica var. kucha, against acylcarnitine metabolism disorder in NAFLD.

Methods: The pharmacological activities of theacrine were studied using high-fat diet (HFD)-fed ApoE-/- and C57BL/6J mice models. Oleate-treated HepG2 and L-02 cells were used to investigate the molecular mechanism of theacrine on acylcarnitine metabolism. The target of theacrine was confirmed in vitro as the blockade of sirtuin 3 (SIRT3) and protein kinase A.

Results: Theacrine inhibits hepatic steatosis and liver inflammation and improves energy expenditure in HFD-fed mice. Theacrine ameliorates acylcarnitine metabolism disorder in HFD-fed mice and oleate-treated hepatocytes by improving fatty acid oxidation. The underlying mechanism involves theacrine's activation of the mitochondrial deacetylase SIRT3 and consequently, the increased activity of long-chain acyl coenzyme A dehydrogenase (LCAD) through deacetylation.

Conclusion: Theacrine promotes acylcarnitine metabolism in NAFLD through the SIRT3/LCAD signaling pathway. The target of theacrine's activities on NAFLD is identified as SIRT3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2018.04.011DOI Listing

Publication Analysis

Top Keywords

acylcarnitine metabolism
28
metabolism disorder
12
theacrine
8
nonalcoholic fatty
8
fatty liver
8
liver disease
8
hfd-fed mice
8
acylcarnitine
7
metabolism
7
theacrine protects
4

Similar Publications

Background: Plasma metabolites could be suitable as predictive biomarkers for cardiovascular pathologies or death, thereby improving the prediction of protein biomarkers. The release of acylcarnitines may be altered after coronary artery disease (CAD) in subjects with recurrent clinical outcomes, and this could be used as a prognosis tool.

Methods: Patients with stable coronary artery disease (SCAD) who had suffered an acute coronary syndrome 6-9 months before were followed for up to 4.

View Article and Find Full Text PDF

Simultaneous Activation of Beta-Oxidation and De Novo Lipogenesis in MASLD-HCC: A New Paradigm.

Liver Int

February 2025

Department of Digestive and Hepatobiliary Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of hepatocellular carcinoma (HCC). In this study, we combine metabolomic and gene expression analysis to compare HCC tissues with non-tumoural tissues (NTT).

Methods: A non-targeted metabolomic strategy LC-MS was applied to 52 pairs of human MASLD-HCC and NTT separated into 2 groups according to fibrosis severity F0F1-F2 versus F3F4.

View Article and Find Full Text PDF

Background: Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective.

View Article and Find Full Text PDF

Aim: To investigate fasting metabolism in children with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and medium-chain acyl-CoA dehydrogenase deficiency (MCADD) using microdialysis technique.

Methods: Twelve patients (7 with VLCADD, 5 with MCADD, mean age 4.9 years, 10/12 diagnosed via newborn screening) were recruited for investigation in connection to clinical fasting examinations at the Karolinska University Hospital (between 2015 and 2024).

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) causes systemic changes that contribute to delayed cerebral ischemia (DCI) and morbidity. Circulating metabolites reflecting underlying pathophysiological mechanisms warrant investigation as biomarker candidates.

Methods: Blood samples, prospectively collected within 24 hours (T1) of admission and 7-days (T2) post ictus, from patients with acute aSAH from two tertiary care centers were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!