The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving oscillations has never been proven. Here, we applied a "build it to understand it" synthetic biology approach to construct simplified "hybrid" versions of the Hes1 ultradian oscillator combining synthetic and natural parts. We successfully constructed a simplified synthetic version of the Hes1 promoter matching the endogenous regulation logic. By mathematical modeling and single-cell real-time imaging, we were able to demonstrate that Hes1 is indeed able to generate stable oscillations by a delayed negative feedback loop. Moreover, we proved that introns in Hes1 contribute to the transcriptional delay but may not be strictly necessary for oscillations to occur. We also developed a novel reporter of endogenous Hes1 oscillations able to amplify the bioluminescence signal 5-fold. Our results have implications also for other ultradian oscillators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.8b00083DOI Listing

Publication Analysis

Top Keywords

ultradian oscillator
8
synthetic biology
8
biology approach
8
hes1 ultradian
8
hes1
7
oscillations
5
reconstitution ultradian
4
oscillator mammalian
4
mammalian cells
4
synthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!