There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC values against Escherichia coli (0.5-1 μg/mL) and Acinetobacter baumannii (8-16 μg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991783 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.8b00114 | DOI Listing |
World J Microbiol Biotechnol
January 2025
School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs.
View Article and Find Full Text PDFInfection
January 2025
Department of Thoracic Surgery, Saarland University, 66421, Homburg/Saar, Germany.
Background: Lung transplantation is the ultimate treatment option for patients with advanced cystic fibrosis. Chronic colonization of these recipients with multidrug-resistant (MDR) pathogens may constitute a risk factor for an adverse outcome. We sought to analyze whether colonization with MDR pathogens, as outlined in the German classification of multiresistant Gram-negative bacteria (MRGN), was associated with the success of lung transplantation.
View Article and Find Full Text PDFInfection
January 2025
Swiss Centre for Antibiotic Resistance (ANRESIS), Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Purpose: Bloodstream infections (BSIs) cause significant morbidity and mortality worldwide. Pseudomonas aeruginosa is an important microorganism in BSIs. The aim of this study was to analyze recent trends in the incidence and resistance rates of P.
View Article and Find Full Text PDFFEMS Yeast Res
January 2025
Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India.
Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux.
View Article and Find Full Text PDFInt Health
January 2025
Universidad Cientifica del Sur, Villa el Salvador, Lima 15067, Perú.
Background: Antimicrobial resistance (AMR) has emerged as a priority for both public health and the global economy. Moreover, information on AMR is scarce, particularly in low/middle-income countries. We evaluated the direct economic cost of microorganisms and AMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!