The use of external fixators allows for the direct investigation of newly formed interfragmentary bone, and the radiographic evaluation of the fracture. We validated the results of a finite element (FE) model with the in vitro stiffness' of two widely used external fixator devices used for in vivo analysis of fracture healing in rat femoral fractures with differing construction (Ti alloy ExFix1 and PEEK ExFix2). Rat femoral fracture fixation was modeled using two external fixators. For both constructs an osteotomy of 2.75 mm was used, and offset maintained at 5 mm. Tufnol, served as standardized substitutes for rat femora. Constructs were loaded under axial compression and torsion. Overall axial and torsional stiffness were compared between the in vitro models and FE results. FE models were also used to compare the fracture movement and overall pattern of von Mises stress across the external fixators. In vitro axial stiffness of ExFix1 was 29.26 N/mm ± 3.83 compared to ExFix2 6.31 N/mm ± 0.67 (p* < 0.05). Torsional stiffness of ExFix1 was 47.5 Nmm/° ± 2.71 compared to ExFix2 at 19.1 Nmm/° ±1.18 (p* < 0.05). FE results predicted similar comparative ratios between the ExFix1 and 2 as the in vitro studies. FE results predicted considerably larger interfragmentary motion in the ExFix2 comparing to ExFix1. We demonstrated significant differences in the stiffness' of the two external fixators as one would expect from such variable designs; yet, importantly we validated the utility of an FE model for the analysis and prediction of changes in fracture mechanics dependent on fixator choice. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:293-298, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.24034DOI Listing

Publication Analysis

Top Keywords

rat femoral
12
external fixators
12
external fixator
8
fixator devices
8
femoral fractures
8
biomechanics external
4
rat
4
devices rat
4
external
4
fractures external
4

Similar Publications

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect.

View Article and Find Full Text PDF

The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.

View Article and Find Full Text PDF

Unlabelled: Osteoporosis is a condition where bones weaken due to a loss in density and quality, making them fragile and more susceptible to fractures, even from minor stress or injury. In this experimental study, we scrutinized the antiosteoporosis effect of phyllanthin against glycocorticoid (GIOP) induced osteoporosis in rats.

Methods: : SD rats were used in this study and subcutaneous administration of DEX (3 mg/kg) was used for the induction of osteoporosis and rats were treated with phyllanthin and alendronate for 12 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!