The 17 genes of the T-box family are transcriptional regulators that are involved in all stages of embryonic development, including craniofacial, brain, heart, skeleton and immune system. Malformation syndromes have been linked to many of the T-box genes. For example, haploinsufficiency of TBX1 is responsible for many structural malformations in DiGeorge syndrome caused by a chromosome 22q11.2 deletion. We report four individuals with an overlapping spectrum of craniofacial dysmorphisms, cardiac anomalies, skeletal malformations, immune deficiency, endocrine abnormalities and developmental impairments, reminiscent of DiGeorge syndrome, who are heterozygotes for TBX2 variants. The p.R20Q variant is shared by three affected family members in an autosomal dominant manner; the fourth unrelated individual has a de novo p.R305H mutation. Bioinformatics analyses indicate that these variants are rare and predict them to be damaging. In vitro transcriptional assays in cultured cells show that both variants result in reduced transcriptional repressor activity of TBX2. We also show that the variants result in reduced protein levels of TBX2. Heterologous over-expression studies in Drosophila demonstrate that both p.R20Q and p.R305H function as partial loss-of-function alleles. Hence, these and other data suggest that TBX2 is a novel candidate gene for a new multisystem malformation disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030957PMC
http://dx.doi.org/10.1093/hmg/ddy146DOI Listing

Publication Analysis

Top Keywords

digeorge syndrome
8
tbx2 variants
8
variants result
8
result reduced
8
tbx2
5
functional variants
4
variants tbx2
4
tbx2 associated
4
associated syndromic
4
syndromic cardiovascular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!