Even the simplest point defect in a two-dimensional (2D) material can have a significant influence on its electronic, magnetic, and chemical properties. Defect repairing in 2D materials has been a focus of concern in recent years. Based on first-principles calculations, the repair of C and N single vacancies with CO or NO molecules in a C3N monolayer has been studied. The repair process consists of two steps, i.e., filling of the vacancy with the first molecule and removal of the extra O atom by a second molecule. Overall, the repair processes of C and N single vacancies by CO or NO molecules are both thermodynamically and kinetically favorable, as evidenced by the significant energy released and the small energy barriers. In addition, the electronic and magnetic properties and the chemical activity of the C3N monolayer before and after the defect repair have been studied systematically. In addition to single vacancies, the repair of double vacancies with CO was also studied; this process is much less kinetically favorable than the case of single vacancies. This study provides useful insight into the effects of simple atomic vacancies on the physical and chemical properties of the C3N 2D semiconductor and also presents a promising strategy for repairing vacancies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp01653dDOI Listing

Publication Analysis

Top Keywords

single vacancies
16
vacancies
8
atomic vacancies
8
electronic magnetic
8
chemical properties
8
vacancies molecules
8
c3n monolayer
8
kinetically favorable
8
repair
5
repairing single
4

Similar Publications

Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.

View Article and Find Full Text PDF

Spin State Modulation with Oxygen Vacancy Orientates C/N Intermediates for Urea Electrosynthesis of Ultrahigh Efficiency.

Adv Mater

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.

View Article and Find Full Text PDF

Atomically Dispersed Ta-O-Co Sites Capable of Mitigating Side Reaction Occurrence for Stable Lithium-Oxygen Batteries.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.

View Article and Find Full Text PDF

The single crystals of lead-free NaBiTiO were grown using the Czochralski method. The energy gaps determined from X-ray photoelectron spectroscopy (XPS) and optical measurements were approximately 2.92 eV.

View Article and Find Full Text PDF

Defect engineering can create various vacancy configurations in catalysts by finely tuning the local electronic and geometric structures of the active sites. However, achieving precise control and identification of these defects remains a significant challenge, and the origin of vacancy configurations in catalysts, especially clustered or associated ones, remains largely unknown. Herein, we successfully achieve the controllable fabrication and quantitative identification of triple O-Ti-O vacancy associate (VVV) in nanosized Ni-doped TiO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!