Motivated by recent experimental developments of graphitic-CN (g-CN) sheets, we investigate the suitability of hydrogen storage on Li decorated g-CN via first-principles calculations. We find that the binding energies of Li atoms are very large, ranging from 2.70 to 4.73 eV, which are significantly higher than the cohesive energy of bulk Li. Lithium atoms therefore tend to form 2D rather than 3D patterns on g-CN, promoting reversible hydrogen adsorption and desorption. Remarkably, the average adsorption energy of H2 molecules falls in the 0.14-0.23 eV range, and the Li decorated CN shows a high theoretical gravimetric density of 10.81 wt%, which is favorable for massive hydrogen storage. Our results suggest that the Li decorated CN could be a promising hydrogen storage material under realistic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp01145a | DOI Listing |
J Colloid Interface Sci
December 2024
Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China. Electronic address:
J Mol Model
December 2024
Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
Context: Hydrogen storage in porous nanostructured compounds have recently attracted a lot of attention due to the fact that the underlying adsorption mechanism and thermodynamics provide suitable platform for room temperature adsorption and desorption of H molecules. This work reports the findings of a study on the reversible hydrogen storage capacities of Sc and Y decorated C fullerene, conducted using dispersion-corrected density functional theory (DFT) calculation. The transition metal (TM) atoms, such as Sc and Y, are identified to attach to the C-C bridge position of the C fullerene through non-covalent closed-shell interactions.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Electrochemical conversion of CO to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO electrochemical reduction (CORR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides.
View Article and Find Full Text PDFPrecis Chem
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!