Objective: Skull base meningiomas are surgically challenging tumors due to the intricate skull base anatomy and the proximity of cranial nerves and critical cerebral vasculature. Many studies have reported outcomes after primary resection of skull base meningiomas; however, little is known about outcomes after reoperation for recurrent skull base meningiomas. Since reoperation is one treatment option for patients with recurrent meningioma, the authors sought to define the risk profile for reoperation of skull base meningiomas.

Methods: A retrospective review of 2120 patients who underwent resection of meningiomas between 1985 and 2016 was conducted. Clinical information was extracted from the medical records, radiology data, and pathology data. All records of patients with recurrent skull base meningiomas were reviewed. Demographic data, presenting symptoms, surgical management, outcomes, and complications data were collected. Kaplan-Meier analysis was used to evaluate survival after reoperation. Logistic regression was used to evaluate for risk factors associated with complications.

Results: Seventy-eight patients underwent 100 reoperations for recurrent skull base meningiomas. Seventeen patients had 2 reoperations, 3 had 3 reoperations, and 2 had 4 or more reoperations. The median age at diagnosis was 52 years, and 64% of patients were female. The median follow-up was 8.5 years. Presenting symptoms included cranial neuropathy, headache, seizure, proptosis, and weakness. The median time from initial resection to first reoperation was 4.4 years and 4.1 years from first to second reoperation. Seventy-two percent of tumors were WHO grade I, 22% were WHO grade II, and 6% were WHO grade III. The sphenoid wing was the most common location (31%), followed by cerebellopontine angle (14%), cavernous sinus (13%), olfactory groove (12%), tuberculum sellae (12%), and middle fossa floor (5%). Forty-four (54%) tumors were ≥ 3 cm in maximum diameter at the time of the first reoperation. In 100 reoperations, 60 complications occurred in 30 cases. Twenty of the 60 complications required surgical intervention (33%). Complications included hydrocephalus (12), CSF leak/pseudomeningocele (11), wound infection (9), postoperative hematoma (4), venous infarction (1), and pneumocephalus (1). Postoperative neurological deficits included new or worsened cranial nerve deficits (10) and hemiparesis (3). There were no perioperative deaths in this series. On multivariate analysis, posterior fossa location was significantly associated with complications (OR 3.45, p = 0.0472). The 1-, 2-, 5-, and 10-year overall survival rates according to Kaplan-Meier analysis after the first reoperation were 94%, 92%, 88%, and 76%, respectively. The median survival after the first reoperation was 17 years.

Conclusions: Recurrent skull base meningiomas are surgically challenging tumors, and reoperation is associated with high morbidity and complication rates. Despite these cautionary data, repeat resection of recurrent skull base meningiomas in appropriately selected patients provides excellent long-term survival.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2017.11.JNS172278DOI Listing

Publication Analysis

Top Keywords

skull base
40
base meningiomas
32
recurrent skull
24
reoperation
11
skull
10
base
10
meningiomas
9
outcomes reoperation
8
reoperation recurrent
8
meningiomas surgically
8

Similar Publications

Artificial Intelligence, Machine Learning and Big Data in Radiation Oncology.

Hematol Oncol Clin North Am

January 2025

Division of Head and Neck/Skull Base, Department of Radiation Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, 460 West 10th Avenue, Columbus, OH 43210, USA. Electronic address:

This review explores the applications of artificial intelligence and machine learning (AI/ML) in radiation oncology, focusing on computer vision (CV) and natural language processing (NLP) techniques. We examined CV-based AI/ML in digital pathology and radiomics, highlighting the prospective clinical studies demonstrating their utility. We also reviewed NLP-based AI/ML applications in clinical documentation analysis, knowledge assessment, and quality assurance.

View Article and Find Full Text PDF

Head pose-assisted localization of facial landmarks for enhanced fast registration in skull base surgery.

Comput Med Imaging Graph

December 2024

School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, Beijing, PR China; Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450000, Henan, PR China. Electronic address:

In skull base surgery, the method of using a probe to draw or 3D scanners to acquire intraoperative facial point clouds for spatial registration presents several issues. Manual manipulation results in inefficiency and poor consistency. Traditional registration algorithms based on point clouds are highly dependent on the initial pose.

View Article and Find Full Text PDF

Background: Collision sellar tumors are rare disease entities. Less than 30 cases have been reported in the literature in the last 20 years. We present the case of one patient diagnosed with a collision sellar tumor and describe the use of Enhanced Contact Endoscopy for pituitary gland and tumoral identification not previously described in the literature.

View Article and Find Full Text PDF

Background: Meningioma is the most common primary intracranial tumor. This single-center study aimed to analyze the clinicopathological, radiological profile, and outcomes of patients with intracranial meningiomas in terms of functional status, morbidity, mortality, and recurrence-free survival (RFS).

Methods: Patients of intracranial meningioma treated between January 01, 2010, and December 31, 2019, at the Department of Neurosurgery, King George's Medical University, India, were included in this study.

View Article and Find Full Text PDF

Background: Petroclival meningiomas are still a neurosurgical challenge due to their proximity to cranial nerves and cerebral vasculature along the surgical corridor. The usual extension of large petroclival meningiomas is along the posterior fossa, frequently compromising and displacing adjunct cranial nerves such as the sixth and seventh-eight cranial nerve complex with brainstem compression, causing progressive neurological deficit and severe headache. The goal of sizeable petroclival meningioma surgery treatment is a maximal resection with preservation of neurological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!