Segmented polyurethanes were prepared with polycaprolactone diol as soft segment and 4,4-methylene-bis cyclohexyl diisocyanate and l-glutamine as the rigid segment. These polyurethanes were filled with 1 wt.% to 5 wt.% titanium particles (Ti), physicochemically characterized and their biocompatibility assessed using human dental pulp stem cells and mice osteoblasts. Physicochemical characterization showed that composites retained the properties of the semicrystalline polyurethane as they exhibited a glass transition temperature (T) between -35°C and -45°C, melting temperature (T) at 52°C and crystallinity close to 40% as determined by differential scanning calorimetry. In agreement with this, X-ray diffraction showed reflections at 21.3° and 23.6° for polycaprolactone diol and reflections at 35.1°, 38.4°, and 40.2° for Ti particles suggesting that these particles are not acting as nucleating sites. The addition of up to 5 wt.% of Ti reduced both, tensile strength and maximum strain from 1.9 MPa to 1.2 MPa, and from 670% to 172% for pristine and filled polyurethane, respectively. Although there were differences between composites at low strain rates, no significant differences in mechanical behavior were observed at higher strain rate where a tensile stress of 8.5 MPa and strain of 223% were observed for 5 wt.% composites. The addition to titanium particles had a beneficial effect on both human dental pulp stem cells and osteoblasts viability, as it increased with the amount of titanium in composites up to 10 days of incubation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328218772708DOI Listing

Publication Analysis

Top Keywords

polycaprolactone diol
8
titanium particles
8
human dental
8
dental pulp
8
pulp stem
8
stem cells
8
composites
5
preparation characterization
4
characterization titanium-segmented
4
titanium-segmented polyurethane
4

Similar Publications

The escalating prevalence of skeletal muscle disorders highlights the critical need for innovative treatments for severe injuries such as volumetric muscle loss. Traditional treatments, such as autologous transplants, are constrained by limited availability and current scaffolds often fail to meet complex clinical needs. This study introduces a new approach to volumetric muscle loss treatment by using a shape-memory polymer (SMP) based on block copolymers of perfluoropolyether and polycaprolactone diol.

View Article and Find Full Text PDF

A screening method for polyester films-degrading microorganisms and enzymes.

J Hazard Mater

January 2025

Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.

Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.

View Article and Find Full Text PDF

Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions.

View Article and Find Full Text PDF

Versatile ionic liquid gels formed by dynamic covalent bonding and microphase separated structures.

Mater Horiz

August 2024

Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, School of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.

It is challenging for ionic liquid gels to achieve the combination of rapid self-healing with high toughness. Here, ionic liquid gels (DI-PR) were prepared from readily available materials. A dynamic covalently bonded oxime-carbamate was prepared from polycaprolactone diol, isophorone diisocyanate and dimethylethyleneglyoxime, followed by addition of the "rigid-flexible" cross-linking agent rutin to chemically cross-link the polymer chains and afford the ionic liquid gels, DI-PR.

View Article and Find Full Text PDF

Polyurethane Microstructures for 2'-Deoxycytidinic Acid Delivery: Preparation and Preliminary Characterization.

Medicina (Kaunas)

March 2024

Department II (Microscopic Morphology), Genetics Discipline, Center of Genomic Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 E. Murgu, Sq., 300041 Timisoara, Romania.

: Nucleotide delivery has emerged as a noteworthy research trend in recent years because of its potential utility in addressing a range of genetic defects resulting in the presence of incorrect nucleotides. The primary goals of this research were to create and to characterize polyurethane microstructures, with the aim of utilizing them for nucleotide transport. : Two samples were prepared using an aliphatic diisocyanate in reaction with a mixture of polyethylene glycol and polycaprolactone diol, where 2'-deoxycytidinic acid was used as the active agent and glycerol 1,2-diacetate was used as an enhancer of the aqueous solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!