The role of the nervous system in neuromuscular fatigue induced by ultra-endurance exercise.

Appl Physiol Nutr Metab

a Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.

Published: November 2018

Ultra-endurance events are not a recent development but they have only become very popular in the last 2 decades, particularly ultramarathons run on trails. The present paper reviews the role of the central nervous system in neuromuscular fatigue induced by ultra-endurance exercise. Large decreases in voluntary activation are systematically found in ultra-endurance running but are attenuated in ultra-endurance cycling for comparable intensity and duration. This indirectly suggests that afferent feedback, rather than neurobiological changes within the central nervous system, is determinant in the amount of central fatigue produced. Whether this is due to inhibition from type III and IV afferent fibres induced by inflammation, disfacilitation of Ia afferent fibers owing to repeated muscle stretching or other mechanisms still needs to be determined. Sleep deprivation per se does not seem to play a significant role in central fatigue although it still affects performance by elevating ratings of perceived exertion. The kinetics of central fatigue and recovery, the influence of muscle group (knee extensors vs plantar flexors) on central deficit as well as the limitations related to studies on central fatigue in ultra-endurance exercise are also discussed in the present article. To date, no study has quantified the contribution of spinal modulations to central fatigue in ultra-endurance events. Future investigations utilizing spinal stimulation (i.e., thoracic stimulation) must be conducted to assess the role of changes in motoneuronal excitability on the observed central fatigue. Recovery after ultra-endurance events and the effect of sex on neuromuscular fatigue must also be studied further.

Download full-text PDF

Source
http://dx.doi.org/10.1139/apnm-2018-0161DOI Listing

Publication Analysis

Top Keywords

central fatigue
24
nervous system
12
neuromuscular fatigue
12
ultra-endurance exercise
12
ultra-endurance events
12
fatigue
9
central
9
system neuromuscular
8
fatigue induced
8
ultra-endurance
8

Similar Publications

Circulating Endocannabinoids Are Associated with Mental Alertness During Ultra-Endurance Exercise.

Cannabis Cannabinoid Res

December 2024

Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses.

View Article and Find Full Text PDF

Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction.

J Funct Morphol Kinesiol

December 2024

Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA.

Blood flow restriction (BFR) is a popular resistance exercise technique purported to increase metabolic stress and augment training adaptations over time. However, short-term use may lead to acute neuromuscular fatigue and higher exertion ratings. The purpose of the current study was to examine acute physiological responses to low-load resistance exercise utilizing BFR compared to higher-load, non-BFR resistance exercise.

View Article and Find Full Text PDF

Ultra-Stiff yet Super-Elastic Graphene Aerogels by Topological Cellular Hierarchy.

Adv Mater

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Lightweight cellular materials with high stiffness and excellent recoverability are critically important in structural engineering applications, but the intrinsic conflict between these two properties presents a significant challenge. Here, a topological cellular hierarchy is presented, designed to fabricate ultra-stiff (>10 MPa modulus) yet super-elastic (>90% recoverable strain) graphene aerogels. This topological cellular hierarchy, composed of massive corrugated pores and nanowalls, is designed to carry high loads through predominantly reversible buckling within the honeycomb framework.

View Article and Find Full Text PDF

Occupational adjustments and work ability of young adult cancer survivors: results from the AYA-Leipzig study.

J Cancer Res Clin Oncol

December 2024

Department of Medical Psychology and Medical Sociology, Comprehensive Cancer Center Central Germany (CCCG), University Medical Center Leipzig, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.

Purpose: Adolescent and young adult cancer survivors (AYA-CS) face a long working life after treatment, yet factors related to a successful return to work remain largely unexplored. We therefore aimed to investigate the use of occupational adjustments and their impact on work ability upon return to work.

Methods: As part of the AYA-LE study, we surveyed AYA-CS (aged 18-39 at diagnosis) who returned to work and assessed work ability (Work Ability Index) as well as use and benefit of occupational adjustments.

View Article and Find Full Text PDF

Background: The last phases of a competitive game are when shoulder injuries most commonly happen, and fatigue is thought to be a major contributing factor, perhaps because of reduced proprioception and motor control. The purpose of this study was to investigate the effect of concentric fatigue on proprioception, motor control, and performance of the upper limb in handball players.

Methods: Forty-six right-handed handball players (all males, age 26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!