We report on the design optimization and tolerance analysis of a multistep lateral-taper spot-size converter based on indium phosphide (InP), performed using the Monte Carlo method. Being a natural fit to (and a key building block of) the regrowth-free taper-assisted vertical integration platform, such a spot-size converter enables efficient and displacement-tolerant fiber coupling to InP-based photonic integrated circuits at a wavelength of 1.31 μm. An exemplary four-step lateral-taper design featuring 0.35 dB coupling loss at optimal alignment of a standard single-mode fiber; ≥7 μm 1 dB displacement tolerance in any direction in a facet plane; and great stability against manufacturing variances is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.003586 | DOI Listing |
Nat Commun
October 2024
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
Centrosymmetric materials with site inversion asymmetries possess hidden spin polarization, which remains challenging to be converted into spin currents because the global inversion symmetry is still conserved. This study demonstrates the spin-polarized circular photocurrents in centrosymmetric transition metal dichalcogenide semiconductors at normal incidence without applying electric bias. The global inversion symmetry is broken by using a spatially-varying circularly polarized light beam, which could generate spin gradient owing to the hidden spin polarization.
View Article and Find Full Text PDFJ Comput Biol
September 2024
Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA.
Recent technological advancements have enabled spatially resolved transcriptomic profiling but at a multicellular resolution that is more cost-effective. The task of cell type deconvolution has been introduced to disentangle discrete cell types from such multicellular spots. However, existing benchmark datasets for cell type deconvolution are either generated from simulation or limited in scale, predominantly encompassing data on mice and are not designed for human immuno-oncology.
View Article and Find Full Text PDFMicromachines (Basel)
April 2024
The Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.
A 2 μm wavelength band spot size converter (SSC) based on a trident structure is proposed, which is coupled to a lensed fiber with a mode field diameter of 5 μm. The cross-section of the first segment of the tapered waveguide structure in the trident structure is designed as a right-angled trapezoidal shape, which can further improve the performance of the SSC. The coupling loss of the SSC is less than 0.
View Article and Find Full Text PDFWe report the nanofabrication and characterization of optical spot-size converter couplers based on curved GaAs cantilever waveguides. Using the stress mismatch between the GaAs substrate and deposited Cr-Ni-Au strips, single-mode waveguides can be bent out-of-plane in a controllable manner. A stable and vertical orientation of the out-coupler is achieved by locking the spot-size converter at a fixed 90 angle via short-range forces.
View Article and Find Full Text PDFWe proposed and demonstrated a highly efficient sub-microscale focusing from a GaN green laser diode (LD) integrated with double-sided asymmetric metasurfaces. The metasurfaces consist of two nanostructures in a GaN substrate: nanogratings on one side and a geometric phase based metalens on the other side. When it was integrated on the edge emission facet of a GaN green LD, linearly polarized emission was firstly converted to the circularly polarized state by the nanogratings functioning as a quarter-wave plate, the phase gradient was then controlled by the metalens on the exit side.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!